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Summary

A lot of conventions emerge in gradual stages without being centrally imposed.
The most significant and complex example in our human society is undoubtedly
human language which evolved according to our need for communication. Also
in artificial multi-agent systems, e.g. mobile robots or software agents, it is
often desirable that agents can reach a convention in a distributed way. To
make this possible, it is important to have a sound grasp of the mechanism by
which conventions arise.

In this thesis we define a theoretical framework that enables us to examine
this process carefully. We make a strict distinction between the description
of the convention problem on the one hand and the solution to this problem
in terms of an agent design on the other. A convention problem specifies the
preconditions any type of agent must comply with. This includes (i) the space
of alternatives from which the convention is to be chosen, (ii) the interaction
model between the agents, which determines which agents interact at what time
and (iii) the amount, nature and direction of information transmitted between
the agents during an interaction. A particular agent design solves a convention
problem if a population of such agents will reach an agreement in a reasonable
time, under the given restrictions.

We focus on the class of convention problems with a global interaction model:
every agent is equally likely to interact with any other agent. We argue that
for these convention problems the performance of an agent can be predicted
by inspecting the properties of the agent’s response function. This response
function captures the average behavior of an agent when interacting with agents
from a non-changing population.

We apply this analytical technique to different sorts of convention problems.
For the more simple convention problems we define general, sufficient properties
which guarantee that a convention will arise after a certain amount of time when
an agent possesses these. For the more difficult convention problems we confine
ourselves to the construction of agents who, we can show, will solve the problem.

Finally, our framework is applied to the problem of language evolution in
artificial agents. This is a complicated domain for which precise mathematical
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results are very difficult to obtain. We will focus on the naming game, a rela-
tively simple instance in the paradigm of languages games. In certain instances
our analysis will surface problems of convergence that have not been noticed
before. This shows on the one hand that it is important to theoretically sub-
stantiate computer experiments in language evolution and on the other that the
framework introduced in this thesis is very suitable to this extent.
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Chapter 1

Introduction

Why do you understand this sentence? Apart from the fact that you have an
appropriate visual system and adequate cognitive capabilities, the reason is that
you know the English language and its written representation. More precisely,
you are familiar with the construction of a sentence as a sequence of words.
You know what these words stand for and how they compose meaning through
grammatical rules. You have also learned that a written word is a combination
of symbols horizontally next to each other. Besides this, it is obvious to you
that a sentence consists of these words placed next to each other in a left to right
order. Finally, you know that the symbol at the end of the opening sentence
marks it as a question.

All these seemingly obvious features are in fact rather arbitrary and merely
a conventional way to represent ideas in language and to write them down.

1.1 What is convention?

All of the rules1 that govern the coding of an intended meaning to written
English, are to a large extent arbitrary. Which words exist, what their meaning
is, which rules govern the composition of sentences are all language specific.
Written languages differ in their representation of words and sentences. English
uses the Latin alphabet to form words, but many other alphabets exist, like
the Cyrillic, Greek, Arabic or Armenian. In written Chinese, words are not
composed of letters, but have their own character. In Arabic and Hebrew, text
runs from right to left and Japanese characters flow down the page.

Yet despite these differences between languages and their written represen-
tations, they can be assumed to have roughly the same expressive power. This

1With ‘rule’ we aim more at an apparent regularity than at a prescriptive rule.
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2 CHAPTER 1. INTRODUCTION

means that in fact it does not particularly matter which precise linguistic rules
a community follows, as long as everyone agrees.

Many other aspects of the way humans act and behave share this character-
istic. Greeting with three kisses, driving on the right side of the road, adhering
to a particular dress code, are all examples of patterns in our behavior that
are ‘customary, expected and self-enforcing’ (Young, 1993). It must be noted,
though, that in each of these cases equally valid alternatives exist. One can just
as well greet with two kisses or drive on the left side of the road.

A regularity in behavior with this property is called a convention. According
to Lewis (1969)

A regularity R in the behavior of members of a population P when
they are agents in a recurrent situation S is a convention if and only
if, in any instance of S among members of P ,

(1) everyone conforms to R

(2) everyone expects everyone else to conform to R

(3) everyone prefers to conform to R on condition that the others
do, since S is a coordination problem and uniform conformity
to R is a coordination equilibrium in S.

There are two important points to draw from this definition. First of all, the
concept of convention only applies in the context of a population of interacting
individuals. Whatever habit Robinson Crusoe could have become used to on
his island is not considered a convention. Secondly, a convention is a ‘solution’
to a coordination problem. According to Lewis, a coordination problem is a
game with at least two coordination equilibria. In other words, a regularity in
behavior is only called a convention if there was at least one other regularity
which could have become the norm.

1.2 Conventions in multi-agent systems

The study of conventions in multi-agent systems serves multiple purposes. On
the one hand it sheds light on how conventions could have arisen in a natural
system (Young, 1993, 1996; Shoham and Tennenholtz, 1997; Kittock, 1993).
On the other hand, conventions are a means to solve coordination problems
within the field of distributed artificial intelligence (Jennings, 1993; Huhns and
Stephens, 1999; Durfee, 2000).

There are mainly two mechanisms through which a convention can come
into existence within a multi-agent system. First, a rule of behavior can be



1.3. INSPIRATION 3

designed and agreed upon ahead of time or decided by a central authority. Such
an approach is often referred to as off-line design (Shoham and Tennenholtz,
1995, 1997; Walker and Wooldridge, 1995). Second, conventions may emerge
from within the population itself by repeated interactions between the agents.
A very nice example illustrating these two mechanisms is given in Young (1996):

We may discern two ways in which conventions become established.
One is by authority. Following the French Revolution, for example,
it was decreed that horse-drawn carriages in Paris should keep to
the right. The previous custom had been for carriages to keep left
and for pedestrians to keep right [. . . ] Changing the custom was
symbolic of the new order [. . . ]

In Britain, by contrast, there seems to have been no single defining
event that gave rise to the dominant convention of left-hand driving.
Rather, it grew by local custom, spreading from one region to an-
other. This is the second mechanism by which conventions become
established: the gradual accretion of precedent.

With regard to the second mechanism, one may wonder how it is possible
that a global agreement on a convention emerges, without a central controlling
entity and with agents that have only local information available. Examples
of this phenomenon are plentiful in human society. In artificial systems, the
question arises how to endow agents with the capacity to reach convention in
a distributed manner. For both these natural and artificial systems, it is very
useful to have a theory which provides insights in this process of convention
formation.

This question of how conventions can emerge in multi-agent systems is not
new; the relevant literature will be discussed in Chapter 2. Yet one of the main
goals of our research was the application of our theoretical framework to models
of language evolution that have been studied at the VUB AI-Lab as discussed in
the next section. By the particular assumptions that are made in these models,
it turned out to be rather difficult to reuse known results from the literature.

1.3 Inspiration

The problem we tackle in this thesis is inspired by the research conducted at
the VUB-AI laboratory over the past ten years on the origins and evolution of
language. Language is seen as a self-organizing system which evolves and adapts
according to the language users’ communicative needs. Most often a synthetic
approach is taken, using the philosophy of ‘understanding by building’ (Steels,
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1997). This resulted in various experimental setups, typically consisting of a
population of agents which interact by playing so-called ‘language games’.

While computer and robotic experiments are an indispensable tool for study-
ing how language can develop in a population of agents, it is very useful to have
a theoretical framework underpinning the phenomena one observes. A math-
ematical theory focuses on the essential features of a system and can thereby
provide a deeper understanding of the observed phenomena. Moreover it can
enhance the design of new experiments.

The starting point of this thesis was the search for a theoretical foundation of
the various results that had been obtained on the evolution of language by means
of computer experiments. Not surprisingly, many aspects of these dynamics are
not specific for the evolution of language, but apply to any system where a
convention emerges as the result of local interactions between agents. After all,
language is a conventional system.

Despite this broader perspective of the evolution of conventions, theoretical
results from this domain do not readily apply to the models of language evolution
at hand. The reason why is addressed in the next chapter. The only way, then,
to obtain a theory of convention evolution which is applicable to evolution of
language as studied at the AI-lab was to develop one ourselves.

1.4 Contributions

We believe our largest contribution is the development of a framework for study-
ing the evolution of conventions in multi-agent systems.

First of all, we draw a clear separation between the specification of the
problem on the one hand and the proposal of a solution on the other. The
former was named a convention problem and specifies the convention space,
interaction model and information transfer model. The latter comes in the form
of an agent architecture, which specifies the evolution of the agent’s behavior as
a function of its internal state and its interaction with other agents, according to
the convention problem at hand. This strict separation allows a systematic and
transparent comparison of different agents designed to solve the same problem.

Secondly, we develop an analytical tool that allows a reliable prediction of the
performance of an agent with respect to a convention problem. This technique
is based on the concept of an agent’s response function. This function captures
the long term behavior of an agent under fixed external conditions.

Next, we apply this framework to several different convention problems.2

For both the binary and multiple convention problem, this results in the char-
acterization of a rather large class of agents representing good solutions. We

2For their definitions we refer to section 2.5
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also show under which conditions learning automata are valid candidates for
reaching convention in another setting, CP3.

Last but not least, we show that our analytical framework is a valuable tool
for guiding the design of experiments and agents in the evolution of language.
We closely examined several strategies that have been proposed for the evolu-
tion of communication, both from within the AI-lab as by people outside the
AI-domain. Surprisingly, in many cases this analysis predicts problems with
respect to convergence, which were previously uncovered but are nevertheless
also confirmed by experiment. On the one hand this shows the applicability of
our framework to the domain of language evolution and its predictive power.
On the other hand, it also emphasizes the importance of having a solid the-
oretical framework and understanding alongside evidence gained by computer
simulations.

1.5 How to read this work

Chapter 2 introduces convention problems and chapter 3 defines the response
function. Together they provide the conceptual framework that is built upon
in subsequent chapters and they are therefore indispensable for a good under-
standing of this dissertation.

Chapters 4, 5 and 6 investigate several convention problems in turn. They
can be read more or less independent from each other.

We tried to separate the math from the main line of reasoning as much as
possible. Formal background is provided at the end of each chapter.
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Chapter 2

The Problem of Agreement in
Multiagent Systems

The problem where a set of individuals has to reach a convention has been
tackled from many different angles in the literature. In this chapter we delineate
this problem of reaching an agreement as we address it in this thesis. We
motivate our specification and compare it to other specifications found in the
literature. We will point out which aspects of this problem we believe are not
completely understood yet and what our contribution is in that respect.

2.1 Convention problems

A complete description of a system of interacting agents which try to reach an
agreement requires the specification of several properties, such as the behavior
of the agents, the interaction style, the topological structure of the multi-agent
system and the topic on which agreement has to be reached. We believe that, for
the sake of clarity, it is very helpful to clearly distinguish between factors that
are somehow external to the agents and factors that depend on the behavior
of the agents themselves. Therefore we introduce the concept of a convention
problem. A convention problem specifies all the mentioned aspects of a multi-
agent system, except the way agents behave and function internally.

If we are given a particular convention problem on the one hand and a
specification of the behavior of the individual agents on the other hand, we
have all the necessary ingredients to predict the (possibly stochastic) evolution
of the corresponding multi-agent system. The most interesting aspect of this
evolution for us, is whether the agents will succeed to reach an agreement in
the end. Apart from this analytical approach, however, the separation of a
convention problem from an agent architecture also allows to take up a synthetic

7
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approach. Given a particular convention problem, is it possible to design an
agent architecture so that a collection of these agents will be able to ‘solve’ the
convention problem?1 Both approaches will be taken into consideration in the
subsequent chapters.

At this point we focus only on the specification of a convention problem, and
present several criteria according to which they can be classified. These are

1) the space of available alternatives from which the agents have to make a
choice, which we will name the convention space or alternative space2,

2) the specification of the way participants are determined in an interaction,
which we name the interaction model

3) the amount, nature and direction of the information exchanged between
agents during an interaction, which is named the information transfer
model.

These problem dimensions will be explored in detail in sections 2.2, 2.3 and 2.4
respectively.

In this thesis we obviously cannot give an account for every single possible
convention problem that can be defined. During the description of the various
criteria in the next three sections we will therefore take the opportunity to
delineate the class of problems we consider and thereby position ourselves with
respect to the existing literature.

2.2 Convention space

A first important aspect of a convention problem is the space of alternatives
from which the agents have to make a collective choice. In this thesis we will
mostly assume that no alternative is preferred over any other. In other words,
it does not matter for the agents which particular choice is made, as long as
everyone agrees.

2.2.1 Discrete versus continuous

Probably the most important distinction we have to make, is between discrete
and continuous alternative spaces. The reason for this is that the properties of
systems coping with this problem are of a fundamentally different nature and
hence require a different approach for analysis.

1We consider a convention problem ‘solved’ if an agreement among the agents is reached.
2For clarity: in the expression ‘alternative space’, the word ‘alternative’ is to be understood

as a noun and not as an adjective to ‘space’
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Agreement problems with a continuous alternative space are typically named
‘consensus problems’ in the literature. In these problems, a set of agents has to
asymptotically approach a sufficiently common value (see e.g. Ren et al. (2005)
for an overview). Typical applications are found in the cooperative control
of multi-agent systems. For example in the multi-agent ’rendez-vous’-problem
(see e.g. Lin et al. (2004)), a collection of autonomous mobile robots has to
agree on a meeting point (a point in a continuous plane) in a decentralized way.
Another research area in which continuous spaces are considered is continuous
opinion dynamics (e.g. Hegselmann and Krause (2002)). In the research on
the evolution of language we find for example Cucker et al. (2004) which uses a
abstract, continuous language space.

Reaching a convention in a continuous instead of a discrete space might
seem more difficult at first sight. Especially if the information the agents can
exchange is discrete, one can try to gradually converge toward a common value,
but one can never agree on an infinite precise number in a finite amount of
time. Nevertheless, in most cases a continuous space allows agents to approach
a consensus in a sense which is impossible in a discrete space. Suppose that
in one occasion, agents have to agree on a real number in the interval [0, 1],
and in another occasion agents have to make a binary decision between either
0 or 1. Suppose furthermore that at a certain point in time, in both cases, the
population is roughly equally divided between agents preferring 0 and agents
preferring 1. In the continuous case, the agents then have the opportunity to all
give some ground and gradually converge to a value somewhere in the middle,
around 0.5. In the discrete case, however, in order to reach consensus there
is no other option than that all the agents who prefer 0 switch to 1, or vice
versa; there simply is no solution ‘in between’. For instance 0 and 1 could stand
for driving left or right on a road, for which the compromise—driving in the
middle—can be hardly considered a solution. If we assume no a priori preference
for either 0 or 1, this poses a real symmetry breaking problem: starting from a
situation symmetrical in 0 and 1, the system has to move to an asymmetrical
situation with only 0’s or 1’s. The only way in which this can happen is that
stochasticity enters the process and that random fluctuations determine to which
side the population will eventually converge.3

The consensus problem in continuous spaces is obviously interesting and is
also related to the origins of language and concepts. For instance in Steels

3It has to be said that such a symmetry breaking problem can also occur in a continuous
convention space. For example, the phenomenon of synchronization of clocks (see e.g. Strogatz
(2004)), requires the alignment of the phases. This phase space can be envisioned as a circle
rather than a line segment. If the phases of the clocks are more or less uniformly spread
around that circle, a similar symmetry breaking problem appears. The bulk of research on
consensus problems, however, does not have this property.
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and Belpaeme (2005) was investigated how language could aid the alignment of
color categories (which are regions in a continuous color space) through linguistic
interactions. In this thesis we will nevertheless confine ourselves to the case of
a discrete alternative space.

2.2.2 Structured versus unstructured

Once it is known that a convention space is discrete, the next question that
comes to mind is what the structure of this space is. We will mainly distinguish
between unstructured or flat convention spaces on the one hand and structured
convention spaces on the other hand. A convention space is unstructured if
the only thing one can say about two alternatives is whether they are equal or
not, otherwise it is structured. We will define the structure of an alternative
space formally in section 3.1.4. At this point we explain it informally with some
examples.

The simplest example of an unstructured convention space is one with only
two elements, i.e. when the agents have to make a choice between only two
alternatives, such as deciding on which side of the road to drive or with which
hand to greet. Another example involving a flat convention space could be
that software agents have to decide on a format in which to exchange data
(say XML, CSV, HTML or RTF) and in which they treat each possible format
as independent from another. In general, an unstructured convention space is
completely specified by the number of elements it contains.

As an example of a structured alternative space, let us consider the day of
the week on which market is held. While one could assume that the days from
Monday to Friday are equally suited, these days have an intrinsic order and
hence inevitably form a structured space: Monday has not the same relation to
Tuesday as it has to Friday. It could for instance be the case that an individual
who currently prefers the market to be held on Mondays is more reluctant to
switch to Fridays than to Tuesdays. From this example it is also clear that
attributing a structure to an alternative space only makes sense if the agents
are aware and make use of it. We return to this point when introducing agents
in section 3.1.

As a stylized, structured convention space in languages with case grammar
we have the decision of the order in which the object (O), verb (V) and subject
(S) are stated, resulting in 3! = 6 alternatives: SVO, SOV, VSO, VOS, OSV
and OVS. In fact, in all the languages of the world the first three of these orders
are observed (Greenberg, 1963). This alternative space is structured because
e.g. SVO has a different relation to SOV than it has to OSV (with the former
it shares one position, with the latter none). Again, individuals could make use
of this e.g. by favoring an order change which preserves at least one position.
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As a final example of a structured alternative space we consider a particular
instance of a labeling problem, described more generally in section 2.4.3. Suppose
there are four objects, a1, a2, a3 and a4 (e.g. four buildings, files, vehicles,
. . . ) which have to be uniquely marked using four available labels l1, l2, l3, l4.
Consequently, in a valid solution to this labeling problem, each label should
be used at least and only once. Therefore each valid solution (alternative)
corresponds to a certain permutation of the labels, whereby the position of a
label determines the object it marks. Hence the convention space is structured
for the same reason as in the previous example. However, in this case, it is
also likely that this structure appears in the way the agents interact. During
an interaction an agent will typically not reveal all of its current assignments
of labels to objects, but more likely only a part of it, e.g. the label he uses for
one particular object. For this reason and because the number of alternatives
grows fast with the number of objects to label (factorial), it is not very useful to
interpret the convention space as a set of 4! = 24 individual, holistic elements.
One would rather incorporate the structure into the description of the space.
We could then for example simply state that an agent prefers l2 to mark a1,
rather than having to state that this agent’s preference is one of the following:
(l2l1l3l4), (l2l1l4l3), (l2l3l1l4), (l2l3l4l1), (l2l4l1l3), (l2l4l3l1).

It should be of no surprise that an analysis of the evolution of conventions
in an unstructured alternative space will turn out to be more easy than in the
structured case. After all, in a flat convention space one can exploit the com-
plete (permutation) symmetry between the alternatives. Most mathematical
results in this thesis will therefore apply to this type of convention space. In
Chapter 6 some cases of structured convention spaces are tackled, albeit in a
less mathematical, more computational manner.

2.3 Interaction model

The second aspect of a convention problem is the specification of which agents
interact with which other agents and at what specific moment in time. This
includes issues such as whether the population of agents is fixed or changes
over time and the number of agents participating in an interaction. Concerning
the systems in this thesis, we will adhere to one particular setting, the ‘global
interaction model’, explained in section 2.3.1. The subsequent sections contrast
this approach with the various different models found in the literature.
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2.3.1 The global interaction model

First of all, we consider a fixed collection of agents. This means that no agents
enter or leave the system. Secondly, an interaction always occurs between ex-
actly two, different agents. An interaction is not necessarily symmetric and
we say that an agent can take up role I or role II in an interaction. Finally,
the interaction model is named global because it is assumed that every agent
is equally likely to interact with any other agent. This latter property can be
described in more detail in two different but fundamentally equivalent ways.

The most natural way is to assume that agents themselves take the initiative
to interact with other agents. Thereby an agent chooses a partner to interact
with randomly from the population. If we assume that the time an interaction
lasts, is negligible to the average time between subsequent interactions, we can
state that an agent will always be available when asked to interact. Which role
the agents take up, is non-essential in the sense that the initiator could always
take up role I, or role II, or choose randomly. Each agent, irrespective of its
identity has the same chance to end up with either role I or II. With regard to
the frequency of interactions, each agent initiates on average λ interactions per
unit of time and these instants are distributed according to a poisson process.
This means that the time between two such instants is exponentially distributed
and consequently the time until the next instant does not depend on the time
of previous interactions.4 We refer to this interaction model as the parallel
model. While this setup might seem rather peculiar at first sight, it is for
example a very good model for the case where the agents move around in a ran-
dom fashion, interacting when being in each other’s vicinity; a case resembling
chemical reactions in gaseous media.

The second possibility to describe the interactions between the agents is
centrally controlled and sequential. We assume that time is discrete. Every
time step, some entity, of which the nature is irrelevant, randomly chooses two
agents from the population and lets them interact with the roles they take
determined at random. We refer to this system as the sequential model.
As this interaction model is straightforward to implement it is mostly used in
computer simulations.

In both models, it is assumed that agents are not aware of each other’s
identity. This means for instance that an agent cannot know whether he has
met the agent he is currently interacting with, before.

It is rather easy to see that the parallel and sequential model, apart from

4For readers not familiar with poisson processes, this can be envisioned as if each agent
repeatedly throws a n-faced dice at a rate of nλ throws per time unit. If one particular face
of the dice comes up, the agent initiates an interaction. The poisson process is the limit of
this process for n→∞.
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the different time concepts, generate interactions between the agents according
to the same probability distribution. A detailed argumentation for this is given
in Appendix A. In this work we will use both descriptions, depending on which
is most appropriate in the context.

We now discuss the different aspects constituting our interaction model (a
fixed population, pairwise interactions, random pairing of agents) in the context
of other approaches found in the literature.

2.3.2 Fixed population versus population turnover

Our assumption of a fixed population of agents can be best compared with
other approaches in the research on the evolution of communication systems in
artificial agent societies. In this field, a clear distinction can be drawn between
systems with horizontal transmission and systems with vertical transmission.

In systems with horizontal transmission, the research mainly focuses on
how a population of agents can develop a language in a decentralized man-
ner. Thereby the agents interact in a peer-to-peer fashion and every individual
is considered equally ‘worth’ learning from. It is no coincidence that this de-
scription exactly matches our interaction model, as this was indeed inspired
by the research centered around the notion of language games (see e.g. Steels
(1998)) which employs the horizontal transmission scheme.

As for the vertical transmission scheme, we find systems inspired by biolog-
ical evolution as discussed in Nowak et al. (1999, 2001); Komarova and Nowak
(2001). The most important difference with our framework, the population
turnover aside, is the notion of fitness: it is assumed that better communica-
tion abilities result in more offspring and that children learn the language from
their parents (or equivalently, from individuals with higher fitness). We assume
instead that every individual is considered equally worth learning from. An-
other model using vertical transmission, the ‘Iterated Learning Model’, e.g. see
Hurford and Kirby (2001); Smith (2004), assumes that the strongest force shap-
ing a language is not its communicative function but its learnability. To study
this, successive generations of agents are considered with a strict distinction
between teachers and learners. This also contrasts with the horizontal trans-
mission scheme in which an agent simultaneously influences and gets influenced
by other agents’ languages.

Having said that, even if we assume a fixed population, this does not mean
that our results will be completely irrelevant for systems where agents enter and
leave the population or even systems with population turnover. On the contrary,
in Chapter 3 it will turn out for example that our analysis is perfectly applicable
to a setup with successive generations of agents. The reason we choose for a
fixed population then, simply is that we want to say something about ‘real’
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multi-agent systems, e.g. software agents, which usually do not reproduce nor
come in successive generations. We consider it a nice extra that our results are
nevertheless also applicable to vertical transmission.

2.3.3 Pairwise interactions

Perhaps the most distinguishing feature of our interaction model is the fact that
agents only meet one other agent at a time and that they update their internal
state after each interaction, without direct knowledge of any global properties
of the population. As is explained in the next chapter, we will indeed describe
an agent as an automaton which makes a state transition after each interaction.

A clear example of a situation in which all agents simultaneously interact in
order to reach a convention is found in voting systems. Thereby it is assumed
that agents have a priori preferences among the alternatives. A voting system
combines these agent preferences in order to produce a final outcome. The
main focus of voting theory is to define criteria on which to judge different
voting systems and to predict the way a voting system might influence the
voting strategy employed by the agents (see e.g. Arrow (1951)).

The comparison of the global interaction model to research conducted in
multi-agent learning is more subtle and is discussed in section 2.6.1.

2.3.4 Random interactions

If one assumes that the multi-agent system forms some kind of network in
which interactions only occur between neighbors, the assumption of random
interactions does not hold anymore. Recently there has been a proliferation of
research on so called complex or ‘scale-free’ networks within complex systems
research (Barabasi and Albert, 1999; Albert and Barabasi, 2002; Dorogovtsev
and Mendes, 2003; Newman, 2003). Related to this we also find research that
investigates the influence of the network structure of a collection of interacting
nodes (agents) on various properties. For instance Santos et al. (2006) investi-
gate how the network structure influences the amount of cooperation that can
survive in a network of agents iteratively playing different kinds of coordination
games with their neighbors on a graph. Also Dall’Asta et al. (2006) extensively
analyze the influence of network topology on the dynamics of agents playing
naming games.

In terms of network topology, our approach then corresponds to a fully con-
nected network, where every agent can interact with any other agent, with the
same probability. This inevitably excludes some very interesting phenomena,
such as the emergence of regions where different conventions arise, which occurs
often in reality. For example linguistic conventions are not universal but depend
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on geographical location and the style of referencing in papers differs between
research fields.

The reason we do not consider other network topologies and their influence
on the resulting dynamics, is mainly due to the particular focus we take in this
thesis. Our aim in this thesis is to gain an understanding of the relation between
an agent architecture and the capability of a collection of such agents put in a
population to reach a convention. We believe this problem is not yet generally
solved, not even in the symmetrical, mathematically more tractable case of a
fully connected network.

2.4 Information transfer model

Given the alternative space from which the agents have to make a collective
choice and given the model of interactions between the agents, the final aspect
constituting a convention problem is the nature of the interactions themselves.
These interactions allow the agents to gradually adapt their preferences in order
to achieve a global consensus.

However, establishing a convention in a community is typically not an end
in itself but a means to fulfill some higher goal. And what is more, the main
purpose of an interaction often is to serve this higher goal while the effect
of aligning the agents’ preferences is merely a side-effect. For example, when
people talk to each other, the main purpose is exchanging information of some
sort. While it could happen that a participant in the conversation learns a new
expression or adapts her accent (possibly making future conversations more
efficient) this typically is not the main purpose of the conversation. Or when
people greet, the main purpose is plainly to greet (whatever its social function)
with the establishing of a greeting convention, if not yet present, as a side-
effect. While in this thesis we only want to focus on the question how agents
can establish a convention and not on why they want to reach a convention,
the previous examples show that these two aspects are often closely intertwined
and that a ‘natural’ description of an interaction will contain aspects of both.
This is indeed what we observe in the literature on the evolution of convention,
where interactions are mostly modeled as a game (Lewis, 1969; Young, 1993;
Kittock, 1993; Shoham and Tennenholtz, 1997). Such a game typically provides
a payoff for its participants which is maximal if they reached a convention. As
agents are supposed to try to maximize their payoff, this effectively models their
incentive to get to an agreement.

We will however only focus on the question how agents can get an agreement
and thereby try to define interactions as simple as possible. Therefore we give
some examples of how a natural description of an interaction in terms of a game
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can be stripped down so that only those aspects relevant for the how -question
are retained. These examples will then form the basis to formally define five
convention problems in section 2.5.

Whether to use ‘interaction’ or ‘game’ to describe an encounter between two
agents is largely a matter of taste. We will use ‘interaction’ from the moment
the more game-flavored properties, like both agents choosing a strategy and
receiving a payoff, are left out of the description.

2.4.1 Coordination game

As was mentioned before, the description of an interaction in its most natural
form mostly incorporates some kind of performance measure. A well-known and
suitable framework for this, is game theory. In this framework an interaction is
formulated as a game played by two (or more) agents. These agents simultane-
ously choose a strategy from a given set and they both receive a certain payoff
which depends on the combination of their strategies. For example in Lewis
(1969), a coordination game is introduced having the following payoff matrix

1 2
1 1,1 0,0
2 0,0 1,1

(2.1)

The game is played by two agents. Each of them has two available strategies,
1 and 2. The strategy of the first agents determines the row of the matrix and
the strategy of the second agent determines the column. The resulting pair of
numbers are the payoffs the agents receive, which are equal for both.

It is easy to see that this game corresponds to a convention problem. The
strategies available to both agents are equal and they correspond to the conven-
tion space. Suppose now that this game is played successively between randomly
chosen agents from a population and that these agents try to maximize their
overall payoff. The payoff of all agents is maximized if and only if they all agree
on always playing the same strategy—if one agent does not comply to an estab-
lished convention, his own payoff will drop to zero and also the other agents’
average payoff will decrease (the extent to which depends on the population
size). Hence the incentive for the agents to reach a convention is captured in
the payoffs in the game matrix.

Let us now assume that we take it for granted that the agents want to reach a
convention, and only want to figure out how they can achieve this. Can we then
simplify the formulation of the interaction? The answer is definitely positive.
The only relevant aspect of an interaction is the way it will change the future
behavior of the participating agents. An agent will only change his behavior if
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he gained some information about the preference of the other agent. Hence it
is sufficient to describe an interaction in terms of the information transmitted
between the agents.

In the coordination game (2.1) the agents learn the current preference of
the other agent: either by direct observation or by combining the payoff they
have received with the strategy they chose themselves. Hence in this case we
can simply state that an interaction consists of two agents informing each other
about their current preference.

Let us now turn to a coordination game with three instead of two alterna-
tives:

1 2 3
1 1,1 0,0 0,0
2 0,0 1,1 0,0
3 0,0 0,0 1,1

In this case, the reformulation of the game depends on how the game was origi-
nally formulated. Either both agents can directly observe the chosen strategy of
the other or they only observe the payoff they receive. In the former case, both
agents inform each other about their current preference, like in the previous
example. In the latter case the agents only learn the other agent’s preference if
it by chance happens to be the same as their own. Otherwise they only learn
that the other agent has a different preference.

2.4.2 A simplified guessing game

Our next example of an interaction type is best understood as a stylized, very
simplified version of the guessing game (see Steels (2001)). Consider a game
played successively between two randomly chosen agents from a population, in
a shared context containing a number of objects. This context differs from game
to game. During a game one of the agents, the speaker, chooses an object at
random, which will serve as the topic of the game, and searches for a feature
which uniquely discriminates it from the rest of the objects in the context (such
as its color, shape, height, texture,. . . ). The speaker then utters a word which
he associates with that feature. Based on this word the other agent, the hearer,
has to guess which object the speaker had in mind. If his guess is correct, the
game succeeds. If his guess was wrong or if he did not have a clue about what
the word meant, the game fails. In this case the speaker points to the object he
meant.

This game obviously has many characteristics of a convention problem.
Roughly speaking, in order to have success in all games, the agents need to



18 CHAPTER 2. PROBLEM OF AGREEMENT

come to an agreement on how to name the different features.5 Now, regarding
the way in which the agents could achieve this, we have to focus on the informa-
tion the agents receive during a game. A first observation is that, irrespective
of the success or failure of the game, the hearer learns which object the speaker
had in mind (either by hearing that his guess was correct or by the speaker
pointing to the object). The speaker in turn observes that the hearer either . . .

1) does not guess at all, which could mean that he did not know the word
or that the meaning the hearer attributes to this word apparently did not
make much sense in the context,

2) makes a wrong guess, or

3) guesses the object he had in mind.

In any case, the information the hearer gains is more valuable than that of the
speaker. The hearer learns that the word he heard is the speaker’s preferred
way to describe one of the discriminating features of the topic. The speaker, on
the other hand, in case 2) or 3) learns that the hearer associates a feature of
the object he guessed with the word he heard. This does not yet imply that the
hearer would also use that word himself if he were to describe that feature. In
case 1) the speaker receives even less information. The failure could be caused
by the fact that the word he used is not known by most of the other agents. In
this case he would better switch to some other word for the feature he wants to
express. But it could as well be that the hearer has not yet taken part in many
games before and learned something new, in which case the speaker should stick
to his word.

Altogether, the hearer receives more information than the speaker during a
game and the nature of this information is easier to express. For this reason
we will only retain the information flow from speaker to hearer in our stylized
version of the game. An agent, during each game in which he is hearer, hears a
word and knows that this word is the speaker’s preferred way to express one of
the discriminating features of the topic. From all the words that remain after a
convention has been reached, let us now pick out one particular and focus only
on those games in which it has been used by the speaker. These games can then

5We use this characterization of the condition for successful games for simplicity. In fact
it ignores many interesting phenomena that may arise. For instance, it could happen that
different agents associate the same word with a different meaning, without it ever being
discovered by a failed game. This could be caused by two features always co-occurring in the
given set of objects, e.g. bright and white or big and heavy. Or also, if features are defined
on a continuous domain instead of being attributes that are either present or absent (e.g. a
color represented by a bounded region in some color space), the agents will never have—and
do not need to have—exactly the same representation.
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be interpreted as the way the agents negotiated the meaning of that word. In
principle all possible features are valid candidates. Yet during an interaction,
the speaker cannot directly reveal the meaning he prefers the word to have.
He can only inform the hearer that this meaning is to be found in the set of
discriminating features for that specific topic.

To conclude, another possible type of information transmission is that the
hearer (Agent II) does not directly find out the speaker’s (Agent I) preferred
alternative, but learns that it is a member of some subset of the alternative
space.

2.4.3 Signaling game

Our final example of a type of information transmission is a special case of a
signaling game. Signaling games were introduced by Lewis (1969) in his attempt
to develop a theory of convention and on how signals get their conventional
meaning.

A signaling game is a game with two players, one sender and one receiver.
The sender has some information the receiver does not know. The sender then
chooses a signal to send to the receiver. The receiver has a choice between
several actions to take and can base his decision on the received signal. Both
players then get a (generally different) payoff, depending on the information the
sender initially had, the signal sent and the action taken by the receiver.

The idea of signaling games has been applied to questions in philosophy
(e.g. Skyrms (1996) studying the evolution of the social contract) and biology
(e.g. Grafen (1990) used signaling games to model the handicap principle). In
economy, Spence (1973) introduced the job market signaling model. Senders are
candidate employees and receivers are employers. The private information the
sender has, is its intrinsic value as an employee. The signal he sends, is whether
or not he chose to take an education. The education does not improve ones
capabilities, but it takes less effort for higher skilled people to get an education
than for lower skilled ones. The employer can decide to give the candidate a
high or low wage. This model predicts that higher skilled people will take an
education and lower skilled people will not, and that people with an education
will be offered a higher wage than people without.

The way we will use the signaling game relates to its original conception
by Lewis for studying the emergence of meaning. It is assumed that there is a
set of meanings, one of which the sender wants to convey to the receiver using
a signal. The actions the receiver can take have a one-to-one correspondence
to the meanings and can therefore be identified with them. It is in both the
sender’s and receiver’s interest that the receiver correctly ‘guesses’ the meaning
intended by the sender. Therefore the optimal way to play this game is to
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associate with each meaning a different signal and to interpret these signals
appropriately. It is easily argued that these sender and receiver strategies form
an (optimal) equilibrium of the game. However, as the signals can be assumed
distinct but otherwise equivalent, there exist multiple equivalent equilibria of
this game. It is precisely this property that led Lewis to conclude that the
signals then have gained a meaning by convention.

Proceeding to the question of how such an optimal signaling system can
come about in a population of pairwise interacting agents, we have to be more
specific about the information that is transmitted during a game. Again, we
will only retain those aspects of the game that that convey information. We
assume that after the game, the receiver somehow learns the intended meaning
by the speaker and we ignore the information the sender gains. The received
payoffs do not add information, so agent I conveys to agent II that he uses a
certain signal for a certain object.

If the number of available signals is much higher than the number of mean-
ings, the problem reduces to several independent, multiple convention problems,
one for each object. Let us however assume that the number of available signals
is limited. This brings us back to the labeling problem introduced in section
2.2.2: a set of m objects must be uniquely marked using labels out of a col-
lection of n(≥ m). This problem cannot be simply split up in m independent
problems, one for each object, as the choice one makes for one object restricts
the choice one has for the other objects.

2.5 Classes of convention problems

We are now ready to define some convention problems which will play an im-
portant role in the remainder of this thesis. As already mentioned in section
2.3, we will consistently use the global interaction model throughout this thesis.
Consequently, in the specification of a convention problem (CP from now on)
we will only describe the convention space (as a set Z) and the information
transfer model.

The simplest possible convention problem concerns the choice between two
alternatives:

CP1 [Binary convention problem] The convention space has two alter-
natives: Z = {0, 1}. During an interaction, agent I reveals its current
preference to agent II.

The simplest possible convention problem with multiple alternatives is:

CP2 [Multiple convention problem] The convention space has n alterna-
tives: Z = {1, 2, . . . , n}. During an interaction, agent I reveals its current
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preference to agent II.

Obviously CP1 is a special case of CP2, but we chose to introduce CP1 sep-
arately because of the important role it will play in subsequent chapters. If
agents have to actively ’sample’ one another we get:

CP3 The convention space has n alternatives: Z = {1, 2, . . . , n}. An interac-
tion consists of a coordination game between two agents in which they
simultaneously choose an alternative. This game learns them whether
they made the same choice or not, but they cannot directly observe the
alternative chosen by the other agent.

It is also possible to modify CP3 such that only agent II gets any informa-
tion, like in the previous problems, but this would result in a rather artificial
description.

A simplified version of the guessing game becomes

CP4 The convention space has n alternatives: Z = {1, 2, . . . , n}. During an
interaction, a set C ⊂ Z with k elements is constructed. One of the
elements is the preference of agent I, say i, and the other k − 1 elements
are randomly chosen (without replacement) from Z\{i}. Agent II observes
C and hence learns that agent I’s preference is in this subset of Z. We
necessarily have k ≤ n− 1, otherwise agent II gains no information at all.

And finally we have the

CP5 [Labeling problem] Each one of m objects must be uniquely marked
using a label from a collection of n(≥ m) available labels. The convention
space can be represented as

Z = {(l1, . . . , lm) | li ∈ {1 . . . n} and li 6= lj if i 6= j}.

During an interaction, agent I reveals the label he prefers for a randomly
chosen object.

2.6 Discussion

To summarize, we have introduced the concept of a convention problem. Such
a problem consists of three components: the convention space, the interaction
model and the information transfer model. We introduced several instances of
convention problems which will be more closely investigated in later chapters.

We deliberately did not assume anything yet about the agents themselves,
in order to keep a clear distinction between the problem statement on the one



22 CHAPTER 2. PROBLEM OF AGREEMENT

hand and a solution in terms of the specification of an agent on the other hand.6

Thereby it is thus assumed that everything specified in a convention problem is
externally imposed and cannot be part of a solution.

Given a particular convention problem, there are several, related questions
that come to mind.

1) Is it possible to devise an agent which solves the problem?(Synthesis)

2) Does a general method exist to predict or prove the performance of an
agent in the problem? (Analysis)

3) Suppose we know of several different agent architectures which all solve
the problem. Does a general, essential feature exist which they all possess
and by itself explains their success? In other words, is it possible to
characterize a (preferably large) class of agents that solve the problem?
(Characterization)

We believe that all of these questions are interesting for all the mentioned con-
vention problems. Yet, as far as we know, not all of them have been thoroughly
answered. Regarding questions 2) and 3), to our knowledge there does not exist
a general (mathematical) theory that goes beyond evidence obtained through
computer simulations.

2.6.1 Related work

Over the past years there has been a proliferation of research on the problem
of learning in multi-agent (MAL) systems, both from an Artificial Intelligence
as a game theoretic perspective (see e.g. Littman (1994); Claus and Boutilier
(1998); Hu and Wellman (1998); Tuyls et al. (2003); Kapetanakis and Kudenko
(2004); Tuyls and Nowe (2005); Shoham et al. (2007)). The problem the agents
face is typically stated as a stochastic game (from Shoham et al. (2007)):

A stochastic game can be represented as a tuple: (N,S,
−→
A,
−→
R, T ). N

is a set of agents indexed 1, . . . , n. S is a set of n-agent stage games.−→
A = A1, . . . , An, with Ai the set of actions (of pure strategies) of

agent i [. . . ].
−→
R = R1, . . . , Rn, with Ri : S × −→A → ℜ giving the

immediate reward function of agent i for stage game S. T : S×−→A →
Π(S) is a stochastic transition function, specifying the probability
of the next stage game to be played based on the game just played
and the actions taken in it.

6Multiple agents with the same specification will then make up the population. We will
also simply use the term ‘agent’ to refer to such an agent specification, if no confusion is
possible.
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One of the interesting questions in this respect is whether learning algorithms
that have been devised for single-agent learning problems, typically modeled
as Markov Decision Problems, still work when the environment of the agent
contains other agents as well, who also continuously adapt their behavior.

We now compare this setting of stochastic games to the types of convention
problems we described before, in order to learn whether we could reuse results
from the MAL literature.

Firstly, if we interpret the problem of reaching convention in a game-theoretic
setting, the games the agents play are fairly simple. They are two-player, sym-
metric, cooperative coordination games: each convention corresponds to a pure
strategy Nash-equilibrium7 and results in the same payoff for all the agents.
This means that the exploration-exploitation trade-off frequently observed in
reinforcements learning does not play: once the agents reach a convention there
is no need for exploring other conventions as they are assumed to be equally
valid. As agents can be constructed for solving particular convention problems,
this also implies that these agent know the available strategies and payoffs of the
game they are playing. In this respect the problem the agents face is relatively
simple compared to the general stochastic game setting described before.

Secondly, however, while in the global interaction model in each game only
two players participate, these agents are drawn randomly from a possibly very
large population. We believe this is the most distinguishing feature of our
setting with the majority of the work in multi-agent learning. In agreement
to the definition of a stochastic game, in most of the existing literature on
MAL, every agent participates in each successive game (e.g. in Littman (1994);
Claus and Boutilier (1998); Hu and Wellman (1998); Bowling and Veloso (2001);
Kapetanakis and Kudenko (2004); Chalkiadakis and Boutilier (2003); Tuyls and
Nowe (2005)). Because most often only two-player games are considered, this
means that the multi-agent systems at hand consists only of two agents. We do
not claim that such a setup is more easily analyzed than the global interaction
model we described—the assumption of a relatively large population where only
two agents interact at a time allows an approximation not possible in a two-
agent setting (as discussed in Chapter 3). Yet what we do want to stress, is that
results from a setting in which every agent participates in every game cannot
be simply transferred to the interaction model we described.

At first sight, the evolutionary game theoretic approach to MAL (Börgers
and Sarin, 1997; Tuyls and Nowe, 2005) appears to match our interaction model
better. In particular in the model of replicator dynamics is assumed that in a
large population of agents every agent continuously has pairwise interactions

7A Nash-equilibrium of a game is a set of strategies, one for each player, so that no agent
can increase its payoff by changing its strategy unilaterally.
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with every other agent. Every agent plays a pure strategy and the relative
frequency of each strategy in the population changes as a function of how well
that strategy has fared in the current population.

This model can be interpreted in two ways (see e.g. also Shoham et al.
(2007)), yet neither way matches our interaction model. Firstly, one can inter-
pret the process as it was originally intended, namely a model for the biological
evolution of reproducing entities (genes, species. . . ). In this case the agents
themselves do not learn, but the system evolves by their different reproduction
rate. This obviously contrasts with our initial assumptions that the population
of agents is fixed but that the agents themselves change their internal state to
reach a convention. Secondly, one can interpret the state of the population (the
relative frequencies of the different strategies) as the current mixed-strategy of
one agent. For some reinforcement learning schemes it can be shown that the
interaction between two agents results precisely in these replicator dynamics
(Börgers and Sarin, 1997; Tuyls and Nowe, 2005). However, in this interpreta-
tion we end up again with a multi-agent system of typically two agents.

Having said that, there exists research on MAL where not all agents par-
ticipate in each interaction. We will now discuss some of this work in more
depth. Our aim is partly to show the kind of results that are currently known
and partly to motivate our pursuing of answers to the posed questions within
this thesis.

“Learning, Mutation, and Long Run Equilibria in Games” (Kandori
et al., 1993)

In this work and its generalization Kandori and Rob (1995), a framework of
stochastic games (with changing players) is used and the authors prove that a
so-called long-run equilibrium arises when agents play a best-response strategy.
Each agent thereby gathers information about the other agents’ strategies dur-
ing a period in which they all play a certain, fixed strategy. This process of
information gathering and updating a strategy is then repeated several times.
This approach somewhat resembles the mechanism of population turnover in
the research on the evolution of language as mentioned before. It therefore con-
trasts with our interaction model for the same reason: we assume that agents
update their state after each interaction. There is no notion of successive peri-
ods in which agents do not alter their behavior and during which they can gain
reliable global statistics about the state of the whole population.
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“The evolution of convention” (Young, 1993)

In this paper also the framework of stochastic games is employed and in his
model no periods of fixed strategy choice are assumed. The agents base their
strategy choice on a sample of the strategies played in previous games. Yet,
these previous games not necessarily have to be games in which the agents itself
participated. Or using the author’s formulation: “One way to think about the
sampling procedure is that each player “asks around” to find out how the game
was played in recent periods”. This means that agents do not (need to) have
an internal state: “. . . each time an agent plays he starts afresh and must ask
around to find out what is going on”. We, on the other hand, assume that all
information an agent has at its disposal, is gathered by the agent itself during
interactions in which he himself participated.

“On the Emergence of Social Conventions: modeling, analysis and
simulations” (Shoham and Tennenholtz, 1997)

This paper investigates how social conventions can emerge in a population of
agents playing coordination games. The precise setting the authors consider,
shares many characteristics with ours. They also make a distinction between
the problem specification (in terms of a social agreement game) on the one
hand and a possible solution (in terms of an update rule) on the other hand.
Similar to our approach they also use a model of global interactions in the sense
that every agent is equally likely to interact with any other agent. The authors
stress the ‘locality’ of the update rules they use. This means that an agent has
only access to the data he gathered during interactions in which he participated
himself; he has no knowledge of any global system properties. This is also an
assumption we make.

The paper draws many interesting links between the problem of convention
evolution and other fields of research, including mathematical economics, pop-
ulation genetics and statistical mechanics. Thereby it is—at least from our own
experience—correctly noticed that it is difficult to carry over results from one
domain to another. Although there may be many resemblances, “. . . the actual
dynamic systems are for the most part quite different, and also very sensitive
in the sense that even small changes in them result in quite different system
dynamics.”

The analytical results obtained in the paper apply to a class of symmetrical
two-person two-choices coordination games, including cooperative and coordi-
nation games. The agents do not observe each other’s strategy but base their
decisions solely on the payoff they receive.8 In this respect the setting is more

8This is not equivalent to observing the other player’s strategy as it is also assumed that
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general than the binary convention problem. The authors then propose one
particular update rule, named the highest cumulative reward (HCR). For this
update rule, it is then proven that a social convention will be reached. This
proof however uses an absorbing state argument, which is potentially weak with
respect to the time of convergence. We return to this point in the next chapter.

To conclude, the convention space used in this paper is binary. On the one
hand, the information transfer model is more subtle and general than the one
in the binary convention, which presumably makes the reaching of a convention
more difficult. On the other hand, only question 1) is answered, by proposing
the HCR.

“Emergent Conventions and the Structure of Multi-Agent Systems”
(Kittock, 1993)

The setting in this paper bears many resemblances with the previous one. It
also studies the emergence of conventions in a population of agents playing two-
person two-choices games. Also similar is that the agents only make use of the
payoffs they receive. The main focus of this paper however is to understand
how interaction models other than the global interaction model influence the
evolution of the system. Therefore the author introduces an interaction graph.
The vertices of this graph represent the agents and the edges specify which pairs
of agents can play games. In this respect, Kittock’s approach is more general
than ours as the global interaction model corresponds to a special case of an
interaction graph, a fully connected one. One type of agent (strategy selection)
is introduced and its performance investigated for different interaction graphs
and in two kind of games, a coordination game and the prisoners’ dilemma.
While the resulting insights are interesting, they are mostly obtained through
simulation.

“Understanding the Emergence of Conventions in Multi-Agent Sys-
tems” (Walker and Wooldridge, 1995)

In this paper the agents live in an environment in which they can move around
and eat food. It is investigated how conventions may emerge and enhance the
survival chances of the agents. The agents have a choice between four conven-
tions (priority rules based on relative position). Unlike the previous two cases,
the agents do not interact by playing games but just by exchanging informa-
tion about their current preference. This resembles our focus on the information
transfer between agents as discussed in section 2.4 and equals the interactions as

the game (i.e. the payoffs) is not known to the agents. This rules out inferring the other
player’s strategy from its own strategy and received payoff.
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defined in CP1 and CP2. In total sixteen different agent types are investigated.
The authors lay down a nice formal framework but results are obtained only
by simulation. This is probably, due to the environment which is complicated
from an analytical point of view. The authors nevertheless acknowledge the im-
portance of the development of a mathematical theory of convention evolution
and at least according to the second author, such a general theory does not yet
exist.9

2.6.2 Our contribution

We do not have an answer to all of the three questions of 1) synthesis 2) analysis
and 3) characterization for all presented convention problems. Not surprisingly,
the more difficult the convention problems become, the less answers we have.
For all convention problems we will address question 1) and present at least one
agent solving the problem. Chapter 3 introduces a general method for analyzing
an agent specification within a certain convention problem, thereby trying to
answer question 2).

Regarding the binary convention problem, we believe we will also answer
question 3) to a large extent in the remainder of this thesis. We will formu-
late a rather general characteristic for which we proved that if an agent has
this characteristic, he solves the binary convention problem (section 4.1). For
the multiple convention problem we also found such a characteristic, which is
however less general than in the binary case (section 4.2).

Proceeding to the more difficult convention problems, we will either propose
an agent ourselves and show that it indeed solves the problem, or consider
agents that have been described elsewhere and analyze them in the framework
that will be developed in the next chapter. In most cases such an analysis
will confirm that these agents are capable of reaching a convention. In some
occasions, however, it will bring previously uncovered problems to the surface
which may hamper the convergence of the population (in section 6.3 and 6.4).

9Personal communication.
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Chapter 3

An Agent’s Response Analysis

In the previous chapter we introduced the concept of a convention problem. A
convention problem defines the space of alternatives on which agents have to
reach a consensus, the way agents interact and the information that agents are
allowed to transfer during an interaction. A convention problem hence does
not say much about agents themselves. It only defines the ‘interface’ between
agents during an interaction.

We now proceed by incorporating agents in our description. Given a par-
ticular convention problem and the specification of an agent, the multi-agent
system is completely defined. This means that we have all ingredients to derive
the equations of the resulting stochastic dynamical system. A study of this dy-
namical system reveals how the multi-agent system evolves over time and what
the chances are that convention will be reached. The aim of this chapter is to
introduce tools which facilitate such an analysis. The crux of our discussion is
the introduction of the ‘response function’ which models an agent’s input-output
behavior.

3.1 Agents and their behavior

3.1.1 The state space

Generally speaking, an agent is an autonomous entity which lives in a certain
environment. The agent can perceive some aspects of its environment and act
upon it in certain ways. Normally an agent has certain goals it wants to achieve
or a state of affairs it wants to maintain (see e.g. Russell and Norvig (2003) or
Weiss (1999, chap. 1)).

A multiagent system obviously is a system consisting of multiple agents.
This means that the environment of a particular agent consists not only of the

29



30 CHAPTER 3. AN AGENT’S RESPONSE ANALYSIS

‘regular’ environment but also of the other agents with whom it can interact
directly or through the environment. Moreover, in the context of this disserta-
tion, the environment of an agent consists solely of other agents. One immediate
consequence is that the environment of an agent is highly dynamic. The way an
agent can sense and act upon its environment—that is, other agents—is through
interactions described in the previous chapter.

If we take a somewhat abstract view on an agent, we can describe it as a
system with an internal state, e.g. like a finite state automaton. Such a state,
by definition, contains all information necessary to know how the agent will
behave during an interaction with another agent. As agents can take up two
different roles (I and II) in an interaction, this state must specify their behavior
in both cases. We denote the set of states an agent can be in as Q. We assume
that Q is finite and has elements q1, q2, . . . , qm with m = #Q. In section 3.5 we
discuss whether and how the results generalize to infinite state spaces.

In the convention problems defined in section 2.5, except for CP3, agent
I provides information and agent II receives information (in CP3 both agents
fulfill both roles). In other words, during an interaction, agent I influences agent
II. This means that the state must specify how an agent will influence another
agent in case he has role I and how an agent will be influenced by another agent
in case he has role II. The case of bidirectional information transfer in CP4 is
discussed in Chapter 5.

3.1.2 The behavior space

Concerning the way an agent influences another agent, we define an agent’s
behavior as the minimal information about an agent, sufficient to know how it
will influence another agent. For example, from CP1 up to CP4, the only thing
that matters is which alternative agent I chooses. This preference of an agent
is by definition determined by its state. We do not require that the agent’s
choice is deterministic. That is, an agent may choose different alternatives
in two occasions while being in the same state. In this case, however, we do
assume that the agent chooses according to a fixed probability distribution.
This distribution is then a function of the agent’s state.

Generally speaking, given n elements which are randomly chosen with prob-
abilities (x1, x2, . . . , xn), there holds x1, x2, . . . , xn ≥ 0 and

∑n
i=1 xi = 1. We

denote the set of all such probability distributions over n elements as Σn or
simply Σ if there is no confusion possible. Σn is a n − 1-dimensional structure
called a simplex.1 For example in Figure 3.1, Σ2 and Σ3 are shown.

Using this definition, we derive that an agent’s behavior in CP1 through

1One degree of freedom is lost due to the constraint
∑n

i=1 xi = 1.
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Figure 3.1: The unit simplices Σ2 and Σ3.

CP4 is element of Σn (n = 2 in CP1). With regard to CP5, we have a similar
argumentation, but now for each object separately. More precisely, in order to
know how an agent will influence another agent in CP5, we need to know, for
each object, what the chances are that the different labels are chosen. This
means that an agent’s behavior will be an element of (Σn)

m.

From this it is clear that the space of valid agent behaviors only depends
on the convention problem and not on a particular agent. We will refer to this
space as the behavior space and denote it as B.

As a behavior captures all information of how agents influence each other,
it is possible to recognize whether agents have reached a convention only by
observing their behavior and not their internal states. Indeed, in CP1, agents
have reached a convention if they all have behavior (1, 0) or all have behavior
(0, 1) (i.e. all agents always choose alternative 0 respectively 1). More generally,
in CP2 through CP4, agents have reached a convention if they all have the same
behavior which is a unit vector. In CP5, a convention is reached if all agents
have the same behavior that consists of a vector of m different unit vectors.

From the previous examples we can extract some general properties. First
of all, when a convention is reached, agents all have the same behavior. This is
however not sufficient; only certain behaviors correspond to a state of agreement.
We name such a behavior corresponding to a state of agreement an optimal
behavior. The two types of behavior spaces we considered, were convex. This
is a result of the fact that they are defined in terms of probabilities to choose
different alternatives. An optimal behavior is always deterministic and corre-
sponds therefore to an extremal point of the convex behavior space (cfr. pure
and mixed strategies in game theory). If the behavior space is a simplex Σn
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then also all extremal points are optimal behaviors. In the behavior space for
CP5 this is however not the case: e.g. ((1, 0, 0) (1, 0, 0) (1, 0, 0)) is an extremal
point of (Σ3)

3 but is not an optimal behavior.
As an agent’s behavior only depends on its internal state, we can associate a

behavior function f : Q→ B with an agent such that f(s) ∈ B is the behavior
of an agent in state s.

From the previous follows immediately that a necessary condition for an
agent to be able to establish a convention is that he has, for each alternative, at
least one state in which he always chooses that alternative (and hence exhibits
an optimal behavior).

3.1.3 The transition function

An agent’s state (in role II) may change as a result of interactions with other
agents (in role I). From the definition of a behavior, it contains all the necessary
information about how an agent will be influenced by it. More precisely, if
an agent (in role II) in state s is influenced by a behavior b (of an agent in
role I), then its new state s′ will be a function of b. So a transition function
δ : Q × B → Q, such that s′ = δ(s, b) does exist. Generally speaking, δ is a
stochastic function. For example in CP2, if the behavior of an agent is not a
pure alternative, then he chooses probabilistically between several alternatives
and the precise transition agent II will make, depends on this choice. But even
if b is not stochastic, randomness external to the agents, like in CP4, could
render δ non-deterministic.

We can represent the transition probabilities in a compact way as a m×m,
row-stochastic matrix, P b, parametrized by agent I’s behavior b, with

Pb,ij = Prob[δ(qi, b) = qj] (3.1)

We refer to this matrix as the agent’s transition matrix.
We can interpret P as a function B →Mm, with Mm the set of all m×m,

row-stochastic matrices. As it is equivalent to choose randomly between two
behaviors b1, b2 with respective probabilities θ and 1 − θ or to consider the
behavior θb1 + (1− θ)b2, it is easily verified that also must hold

θP b1 + (1− θ)P b2 = P (θb1+(1−θ)b2) (3.2)

or in other words P preserves convex combinations: for any x ∈ Σk (for any k)

x1P b1 + x2P b2 + . . .+ xkP bk = P (x1b1+x2b2+...+xkbk) (3.3)

We will need this result further on when defining the behavior of a population
of agents.
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3.1.4 Symmetry

A straightforward but important restriction we pose on any type of agent is that
it should be indifferent towards which alternative finally becomes the convention.
This is necessary because otherwise one could design a trivial agent with an
‘innate’ convention, which circumvents the interesting problems we want to
address.

In a flat convention space it is clear what this indifference means. Suppose we
observe the evolution of an agent starting from an initial state during subsequent
interactions with other agents. Any consistent renaming, or permutation, of the
alternatives should result in the same permutation of the behavior of the agent
throughout its history. Let us denote the set of all permutation operators on n
elements as Pn or simply P if no confusion is possible. Then, with every state
s ∈ Q and permutation g ∈ P should correspond some other state, written g(s)
so that δ(g(s), g(b)) = g(δ(s, b)), with g(b) ∈ B the appropriate transformation
of the behavior b under the permutation. Also g(f(s)) = f(g(s)) should hold.
If both these conditions are fulfilled we will say that the agent commutes with
g.

With regard to structured convention spaces, the precise formulation of this
restriction is more subtle. The crucial point is that the agent should not com-
mute with all possible permutations of alternatives, but only with some proper
subset of all permutations. We will name this set the commuting permuta-
tion group (CPG) of the convention space. We will say that an agent which
fulfills this requirement is symmetrical.

For example let us reconsider the problem of ordering the object, subject
and verb in a sentence, introduced in section 2.2.2. The alternative space con-
sisted of the six elements Z = {SVO, SOV,VSO,VOS,OSV,OVS}. It is not
required that an agent commutes with all 6! = 720 possible permutations of
these alternatives, as would be the case if they were considered holistic entities.
Rather, the agent should only commute with all possible ways to rename S,
V and O.2 This results in the following CPG for this problem, consisting of
six permutations of the alternatives (with the same order of elements as in the

2We use this example with this abstraction for the sake of exposition. A more or less
realistic model of how this order evolved in human language would require the incorporation
of many more subtle constraints.
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definition of Z):

(1 2 3 4 5 6)

(2 1 5 6 3 4)

(3 4 1 2 6 5)

(4 3 6 5 1 2)

(5 6 2 1 4 3)

(6 5 4 3 2 1)

We believe this sufficiently explains the relation between the structure of
a convention space and the restriction we pose on agents for the convention
problems that will be considered in this thesis. We will now digress briefly to
show how the set of all meaningful CPG’s of a given alternative set can be
elegantly characterized. This part is of theoretical interest but by no means
essential for the understanding of the remainder of this text.

Every CPG is a group, in the group-theoretical sense, with the usual com-
position of permutations as operator. It is indeed easily verified that if an agent
commutes with permutations g and h, it will also commute with g ◦ h. The
CPG for an alternative set of n elements is then a subgroup of the symmetric
group of degree n, i.e. the group of all permutations of n elements, typically
denoted Sn (Rosen, 1995). The CPG of a flat convention space is Sn itself.3

At first sight one could allow any subgroup of Sn to be a CPG and thereby
define the structure on the convention space. This however leaves open some
uninteresting cases. First of all, the trivial subgroup consisting of the identity
element would then be a valid CPG, posing no restriction whatsoever on the
agent: an agent always commutes with the identity permutation. Therefore this
would allow a specification of an agent which innately prefers one particular
alternative and thereby immediately solves the convention problem. But also
non-trivial subgroups of Sn can leave undesirable opportunities for the agents
to ‘cheat’. Consider for example the case n = 4 with the CPG consisting of the
identity and g = (2 1 4 3). In this case an agent cannot have an ‘innate’ bias
for one of the four alternatives, as this would violate the agent commuting with
g. Nevertheless, the agent could have an innate bias toward using either 1 or 2
instead of 3 or 4, without violating the commutation.

The only way to avoid these shortcuts whereby an agent can a priori prefer
some alternatives over others, is to make sure that it is possible to map every
alternative to every other alternative only using permutations from the CPG. We
denote this set of subgroups of Sn asHn. Hn hence captures all the different ways
one can add structure to a set of n alternatives while retaining their equivalence.

3We will use the name for a group or the set of its elements interchangeably.
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Sn, containing n! elements, is an element of Hn and is the CPG of a flat
convention space. The smallest number of elements of any CPG in Hn is n.
These ‘minimal’ CPG’s are by definition groups of order n, but also the converse
is true: every group of order n is isomorphic to a CPG inHn. Indeed, by Cayley’s
theorem (Rosen, 1995, chap. 3) every group G of order n is isomorphic to a
subgroup of Sn. Moreover, this subgroup will map every element to every other
element exactly once, so that G is isomorphic to a CPG in.

To show that there may also exist groups in Hn of order greater than n but
not equal to Sn, we consider the subgroup of S4 generated by the permutations
(2 3 4 1), (4 3 2 1). It is easily verified that this group is of order 8.

We conclude with an example of a minimal CPG: the cyclic group. Sup-
pose people have to decide on a date for a yearly festival. Suppose there are
no constraints or external factors influencing their a priori preferences for the
possible dates. However, they obviously are aware of the linear, cyclic structure
of the days of a year. This means that if someone has observed two proposals,
one for the 19th of November and another for the 21st, he may then prefer the
20th of November to, say, the 2nd of April, even if none of the latter dates
had been proposed by anyone before. Consequently, a natural way to describe
the restriction on an agent which should solve this convention problem, is that
it must commute with any cyclic permutation of the days of a year. In other
words, the CPG of the convention space is the cyclic group C365.

3.1.5 Example

To illustrate the concepts and terminology introduced, we look at an example of
an agent for the binary convention problem. The convention space is Z = {0, 1}
and the behavior space for this convention problem is Σ2 = {(p, 1 − p) | p ∈
[0, 1]}. As this is a one-dimensional space, we can also define a behavior by
giving its first component: the probability to choose 0. For simplicity this is
how we proceed.

Agent 1a The agent has three states Q = {q1, q2, q3} with transitions defined
as

0

1

0

0

1

1q1 q2 q3

or explicitly

δ(q1, 0) = q1 δ(q2, 0) = q1 δ(q3, 0) = q2 (3.4)

δ(q1, 1) = q2 δ(q2, 1) = q3 δ(q3, 1) = q3 (3.5)
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and a behavior function

f(q1) = 1 = (1, 0)
f(q2) = 1/2 = (1/2, 1/2)
f(q3) = 0 = (0, 1).

From the state diagram it is clear that the agent is symmetric, or in other
words, indifferent between the alternatives.

In the binary convention problem only agent II changes its state after an
interaction. This happens based on the information he received from agent I,
namely its preference. Hence the state diagram for agent 1a specifies for each
state and for each alternative the state transitions the agent will make. For
example if agent II is in state q2 before the interaction, and he learns that agent
I prefers alternative 0, he will switch to state q1.

When the agent takes role I, its behavior function defines its preference for
the alternatives. For example, if an agent is in state q3 and participates in an
interaction as agent I, he will always convey that his preference is alternative 1.
If however the agent is in state q2, then he will choose randomly and with equal
chance between 0 and 1. Consequently, in this case the transition agent II will
make, is stochastic.

Given a behavior (p, 1− p), the agent’s transition matrix is

P p =

q1 q2 q3
q1 p 1− p 0
q2 p 0 1− p
q3 0 p 1− p

(3.6)

meaning that, given the agent is in a certain state, the corresponding row in the
matrix shows the probabilities to make a transition to each of the other states
(and the state itself).

3.2 Stochastic dynamics

Given a particular convention problem and an agent, we have all ingredients to
predict the evolution of the multi-agent system. To make the discussion as clear
as possible, we start with an example concerning the binary convention problem
with five agents of type 1a. Table 3.1 contains a few steps in the evolution. As
we use the global interaction model, the agents taking up role I and II are
randomly determined.

Now, because we use a model of global interactions (i.e. every agent is
equally likely to interact with any other agent) it is not necessary to keep track
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Agent Role
a1 a2 a3 a4 a5 I II pref.
q3 q3 q1 q2 q1 a2 a5 1
q3 q3 q1 q2 q2 a4 a3 0

q3 q3 q1 q2 q2 a5 a1 0

q2 q3 q1 q2 q2 a2 a4 1

q2 q3 q1 q3 q2

Table 3.1: The evolution of the states of five agents of type 1a over four
interactions. Each line contains the current states the agents are
in and for the next interaction the identities of the agents taking
up role I and II and the selected preference of agent I (stochastic
if in state q2). After an interaction only the state of agent II
(which is marked) can have changed.

State Role
q1 q2 q3 I II pref.
3 5 2 q3 q2 1
3 4 3 q1 q1 0
3 4 3 q2 q2 0
4 3 3 q2 q3 0
4 4 2

Table 3.2: The evolution of the number of agents (of type 1a) in each of the
states q1, q2 and q3. The population size is 10. The role columns
specify the states agent I and II are in.

of the state of every individual agent as we did in table 3.1. The state of the
whole system is completely determined by the number of agents that are in
each of the states of Q. With N the number of agents and m = #Q as defined
before, we denote this system-level state space as UN

m or shortly U with

U = {u ∈ N
m|
∑

i

ui = N}. (3.7)

U contains
(
N+m−1

N

)
elements, instead of mN in the previous case.

To continue our example, table 3.2 contains the evolution of the number of
agents in each of the states q1, q2 and q3.

We now introduce the equations governing this evolution. We make use of
the parallel interaction model (see section 2.3.1), in which each agent initiates
interactions at a rate of λ, according to a Poisson process. From now on we
allow agents to interact with themselves. This does not change the dynamics
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fundamentally and makes the derivation much more simple. Let X(t) ∈ U be
the system state at time t. Hence Xi(t) is the number of agents in state i at time
t. The future evolution of the system only depends on X(t) and the described
process is a continuous time Markov process on the finite set U . We will also
make use of the relative frequencies of the different states in the population:
x ∈ Σm with x = X/N .

In a small time interval dt, the probability of having more than one inter-
action is negligible and the probability that one particular agent initiates an
interaction is λ dt. The probability that any agent initiates an interaction is
then Nλdt. We write pjk for the probability that an agent in state qj makes
a transition to a different state qk during the interval dt. e(i) is the ith unit
vector.4 We then get

pjk , Pr[X(t+ dt) = X(t) + e(k) − e(j) | X(t)] (3.8)

= Nλdt
m∑

i=1

(
xixj Pf(qi),jk

)
(3.9)

= Nλdt xj

m∑

i=1

xi Pf(qi),jk (3.10)

= Nλdt xjP(
∑m

i=1 xif(qi)),jk (because of (3.3)) (3.11)

In (3.9), Nλdt is the chance that an interaction takes place and the summation
is the probability—given that an interaction takes place—that agent II is in
state qj and makes a transition to qk.

Equation (3.11) contains the expression
∑m

i=1 xif(qi), which is the average
behavior in the population, or population behavior in the following. This
makes sense because for agent II it is equivalent to being influenced by the
behavior of a randomly chosen agent I or by the population behavior. If we
define, for any y ∈ Σm,

f(y) =
m∑

i=1

yif(qi), (3.12)

then (3.11) becomes:

pjk = Nλdt xjPf(x),jk. (3.13)

This leads us to the derivation of the transition rates (not probabilities as we
have a continuous-time Markov chain) between states in U . Given two different
states u1,u2 ∈ U and let µu1,u2 be the transition rate between u1 and u2, then

4The ith unit vector has 1 in the ith position and 0’s elsewhere. Its length is clear from
the context.
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we have

µu1,u2 =

{
pjk

dt
if ∃j, k ∈ Q, j 6= k and u2 = u1 + e(k) − e(j)

0 otherwise
(3.14)

The transition probabilities between states can be derived from the transition
rates as follows (see e.g. Grimmett and Stirzaker (1992, chap. 6)). Suppose
that in the interval ] t, t+ dt ] exactly one transition occurs, we then have

Pr[X(t+ dt) = u2 | X(t) = u1] =
µu1,u2∑
u∈U

u6=u1

µu1,u

(3.15)

3.2.1 Example

We consider again five agents of type 1a in the binary convention problem. The
system-level state space U5

3 = {(5 0 0), (4 1 0), . . . , (2 2 1), . . . , (0 0 5)} contains
21 elements. Because all these elements (if interpreted as points in the three-
dimensional euclidean space) lay on the same plane and form a triangle (similar
to Σ3), we can visualize this state space in two dimensions by projecting this
triangle. Figure 3.2 shows these states together with their transition rates.

Starting from a certain initial state, an evolution of the system consists of
a random walk on this triangular grid, with transition rates dependent on the
state. For example from the state (4 1 0), a transition can be made to the
states (5 0 0), (3 2 0) and (4 0 1).5 The transition rates are 9/10, 4/10 and
1/10 respectively. Consequently, the probabilities to make a transition to each
of these states are 9/14, 4/14 and 1/14.

The Markov chain has two absorbing states in the two lower corners of the
triangle: (5 0 0) and (0 0 5). These are the two states in which all agents agree
on either alternative 1 or 2. Eventually the system will end up in one of these
states, so we know that this system will reach a convention sooner or later.

3.2.2 When does an agent solve a convention problem?

Given the complete specification of the stochastic dynamics of a particular agent
in a particular convention problem, the question arises what this learns us. In
particular, based on what properties of these dynamics do we decide whether
an agent solves the convention problem or not?

In the previous example, from the state transitions rates in figure 3.2 we
could conclude that the system will eventually reach a state of agreement. After
all, these are the only absorbing states of the Markov chain, and from any other

5Recall that agents can influence themselves.
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Figure 3.2: The state space of a population of 5 agents of type 1a, with
transition rates between states. The numbers show the transi-
tion rates multiplied by a factor 10 with λ = 1.
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state, there is always a positive probability that after some time one of the
absorbing states is reached. It is also easy to show that this holds for any
number of agents instead of the five we considered.

Generally speaking, if a finite Markov chain has a number of absorbing
states and if from any state at least one of these absorbing states is reachable,
then the chain will always end up in one of these absorbing states. If all these
absorbing states share a certain, favorable property, this reasoning can be used
to show convergence of a system with respect to this property. We will refer
to this reasoning as the absorbing state argument. This argument sometimes
appears in the literature to prove convergence of a population of agents to a
state of agreement, for example in Shoham and Tennenholtz (1997) and Ke
et al. (2002).

The absorbing state argument has however a serious drawback: it does not
say anything about the time it will take to converge. In fact, its applicability
only depends on the topological properties of the system-level state space. It
only matters whether a transition between two states can happen at all, the
precise value of the transition rate is irrelevant. This means that a potential
danger of this argument is that it can show that a particular agent will eventually
reach an agreement, although this agent might in fact perform very bad with
respect to the time it would take to reach an agreement.

To illustrate this, we introduce two new agents for the binary convention
problem. Although the absorbing state argument applies to both agents, we
will show they perform very bad compared to agent 1a.

Agent 1b [Imitating agent] The agent always prefers the alternative it ob-
served in its last interaction. This agent can be represented as a two-state
automaton with states Q = {q1, q2}:

0

1

0 1q1 q2

with behavior function
f(q1) = 1
f(q2) = 0

The agent commutes with g = (2 1) by g(q1) = q2 and g(q2) = q1.

Agent 1c The agent has 5 states Q = {q1, q2, q3, q4, q5} with transitions
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0

0

0

1

1

1

1

0

q1 q2 q3 q4 q5
0 1

with behavior function

f(q1) = f(q2) = 1

f(q3) = 1/2

f(q4) = f(q5) = 0

Similar to agent 1a, agent 1b will induce two absorbing states at the system
level. One if all agents are in q1 and one if all are in q2. Regarding agent 1c
this holds for q1 and q5. It can also easily be argued that at least one of these
absorbing states is always reachable from any other state, so that the absorbing
state argument indeed applies.

Let us now turn to the time it takes to reach one of these absorbing states.
Figure 3.3 shows the average time to convergence for the agents 1a, 1b and
1c, for several population sizes. Clearly, there appears to be a huge difference
between the performance of these three agents, with 1a, 1b and 1c in decreasing
efficiency. While the convergence time for agent 1a seems to grow more or less
linearly with the population size6, 1b and especially 1c grow much more rapidly
with increasing N .

To gain an understanding in why this is the case, we plotted the evolution
of the population behavior f(x(t)) for each agent type and for several runs,
always with a population size of 100. These are shown in the graphs 3.4. In
each run the agents were assigned randomly chosen states from Q, resulting in
an initial population behavior close to 0.5. A convention is established when this
population behavior reaches either 0 or 1, corresponding to all agents preferring
alternative 1 or 0, respectively. For agents of type 1c—and in general—this does
not necessarily imply that they are all are in the same state. It is sufficient that
all agents are either in states q1 and q2, or in states q4 and q5. But from that
moment on, the only transitions that can happen are agents switching from q2
to q1 or from q4 to q5. So from the moment the population behavior is either 0
or 1, all agents will be in the same state soon thereafter.

6Presumably this time grows as N log(N), see e.g. Kaplan (2005) for supporting evidence.
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Figure 3.3: The average time (in terms of interactions) to convergence, TC ,
for the agents 1a, 1b and 1c, as a function of the population
size, N . Each setting was evaluated using 30 runs. Due to the
large variance in the data per setting, the error bars show the
95% confidence interval of the estimated mean instead of the
standard deviation of the data itself. Initially the agents were
randomly distributed over the states in Q.
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Figure 3.4: The evolution of the average agent behavior for agents 1a, 1b
and 1c for a population of 100 agents and for several runs.
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It seems as if in case 1a, the system is driven away from the central behavior
0.5, either toward 0 or 1. In case 1b there appears to be no such drive and
the system evolves more or less as a pure random walk, reaching convergence
when hitting one of the borders 0 or 1. Finally, in case 1c, instead of being
driven away from 0.5, apparently the system stochastically fluctuates around
this value, being attracted to it again when deviating either toward 1 or 0. The
system then only reaches on absorbing state when such a deviation happens to
be large enough to reach either the border 0 or 1. These observations explain
the much larger convergence times for agent 1b and 1c compared to agent 1a.

The question now naturally arises what causes these different properties of
the stochastic systems. Regarding agent 1a, we can already gain some un-
derstanding from the state transition diagram in figure 3.2. When we take a
closer look at the transition rates, we observe that, with some minor exceptions,
(system-level) states on the left hand side of the triangle have higher transition
rates to states on their left than to states on their right, and vice versa. This
means that if the system is in the left part of the triangle, it has a tendency to
move even further to the left on average, and similar for the states on the right
part of the triangle. Colloquially speaking, once deviated from symmetry axis of
the triangle (corresponding to behavior 0.5) this deviation is reinforced and the
system is driven towards one of the two absorbing states. Agent 1b apparently
does not have this property. Agent 1c even has a tendency to restore deviations
from the behavior 0.5.

To conclude, we need a stronger criterion than the absorbing state argument
for deciding whether an agent solves a convention problem. We need to inves-
tigate whether the system has a ‘drive’ to go to one of the absorbing states or
only reaches them by mere luck. The difference between these ways of reaching
the absorbing states translates into a fundamentally different dependence of the
converge time on the size of the population. The most natural way to investi-
gate these issues is by considering the ‘average’ dynamics of the system, which
we achieve by a deterministic approximation of the stochastic system.

3.3 A deterministic approximation

The system described so far is stochastic for two reasons: the participants in
successive interactions are determined in a random way and within an interac-
tion, the transition an agent makes can also be stochastic. As argued before, it is
however very useful to have a deterministic approximation of the process. These
average dynamics learn us the underlying drive of the system. Moreover, ordi-
nary differential/difference equations are more easily studied than their stochas-
tic counterparts. In many fields, like population dynamics, replicator dynamics,
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evolutionary games etc. (see e.g. Hofbauer and Sigmund (1998)), the determin-
istic equations are often the starting point. Yet, there are important differences
between the stochastic and deterministic equations which we will discuss further
on.

We first derive the expected change in X, the total number of agents in each
of the states in Q, during a small time step dt (with all summations from 1 to
m and ·T the transposition operator):

E[XT(t+ dt)−XT(t) | XT(t)] =
∑

j 6=k
pjk(e

(k)T(t)− e(j)T(t)) (3.16)

=
∑

jk

pjk(e
(k)T(t)− e(j)T(t)) (3.17)

= Nλdt
∑

jk

xjPf(x),jk (e(k)T(t)− e(j)T(t))

(3.18)

= Nλdt
(
xTP f(x) − xT

)
(3.19)

with pjk as derived in (3.13). In the derivation we made use of
∑

k Pf(x),jk = 1
as P f(x) is a row-stochastic matrix. It is now a little step to derive from (3.19)
the differential equation for the expected evolution of x:

ẋT = lim
dt→0

1

N dt
E[XT(t+ dt)−XT(t) | XT(t)] (3.20)

= λ
(
xTP f(x) − xT

)
(3.21)

= λxT
(
P f(x) − I

)
(3.22)

Thereby I is the identity matrix. Unless stated otherwise, we take λ = 1 for
in the remainder of this section. We will refer to (3.22) as the deterministic
system.

Readers familiar with replicator dynamics, a framework commonly used in
evolutionary game theory (see e.g. Samuelson (1997)), may wonder whether
there is a relation between (3.22) and replicator dynamics. The answer is gen-
erally negative. Apart from the fact that they both take place on a simplex,
there are some fundamental differences between them. From a conceptual point
of view, there is the lack of the notion of fitness in (3.22), a central concept in
replicator dynamics. From a more technical point of view, in replicator dynam-
ics, the expression for the rate of change of a certain species i always takes the
form:

ẋi = xi(. . . ) (3.23)

This implies that if a certain state/species is completely absent in the popula-
tion, it will remain that way. In other words, xi = 0 implies ẋi = 0. In system
(3.22) this is generally not the case as we will see in the examples (section 3.3.1).
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The deterministic equations (3.22) capture the average dynamics of the sys-
tem. We will say that an agent solves a convention problem if the deterministic
dynamical system it induces, converges to a state of agreement for almost all
initial conditions.7 The reason why we believe this is a useful characteriza-
tion will become clear when we discuss the relation between the deterministic
approximation and the original, stochastic system in section 3.3.2.

3.3.1 Examples

Agent 1a

Equation (3.22) becomes, using (3.6):

(
ẋ1 ẋ2 ẋ3

)
=
(
x1 x2 x3

)



p1 − 1 p2 0
p1 −1 p2

0 p1 p2 − 1



 (3.24)

where
(
p1

p2

)
= f(x) = x1

(
1
0

)
+ x2

(
0.5
0.5

)
+ x3

(
0
1

)
(3.25)

or explicitly

ẋ1 =
1

2
(2x2

1 + 3x1x2 + x2
2)− x1

ẋ2 =
1

2
(4x1x3 + x1x2 + x2x3)− x2

ẋ3 =
1

2
(2x2

3 + 3x2x3 + x2
2)− x3

(3.26)

As x(t) ∈ Σ for all t,
∑m

i=1 ẋi(t) = 0 which can be easily verified for these
equations.

Figure 3.5 shows the dynamics of this deterministic system. It is easily
observed that none of the agents occupying a particular state does not imply
that this will stay that way. For instance if no agent is in state q2, i.e. x2 = 0,
but x1 > 0 and x3 > 0, then it holds that ẋ2 > 0 and q2 will enter again.
This can be seen in figure 3.5 by trajectories starting from the bottom line
(corresponding to x2 = 0) entering the interior of the triangle. The same holds
for x1 = 0 or x3 = 0.

The system has three equilibria, of which two fixed point attractors: (1 0 0)T

and (0 0 1)T and one saddle point (1
3

1
3

1
3
)T. In the two stable equilibria, all

7The set of initial conditions for which no agreement is reached, should have zero measure.
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q1

q2

q3

Figure 3.5: A state space plot of the dynamics of a population of agents of
type 1a, given by the equation (3.26). The trajectories show the
evolution of x(t) = (x1(t) x2(t) x3(t)), the relative frequencies
of agents in states q1, q2 and q3.

the agents are either in state q1 or q3 and hence all prefer either 0 or 1, so that
a convention is established. As the system always converges to one of these
points, except for the unstable subspace x1 = x3 (the central vertical line in the
triangle), we can conclude that agent 1a solves the binary convention problem.
This finding corresponds with the observations made in figure 3.3 and 3.4(1a)
that a population of agents of type 1a indeed reaches a convention relatively
quickly.

Agent 1b

The transition matrix for this agent is

P p =

(
p 1− p
p 1− p

)
(3.27)

With p = x1, (3.22) then immediately becomes

ẋ1 = 0

ẋ2 = 0
(3.28)

Hence every element of Σ2 is a neutrally stable equilibrium for this system.
This means that this agent does not induce a driving force towards one of the
agreement states (1 0) or (0 1). Consequently the agent does not solve the
binary convention problem.
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In the original stochastic system this apparently translates in a kind of ran-
dom walk (or neutral drift) as was depicted in figure3.4(1b). This then resulted
in relatively long convergence times, as shown in figure 3.3, because the borders
(1 0) or (0 1) are only hit by chance.

Agent 1c

The transition matrix of this agent is

P p =





p 0 0 1− p 0
p 0 1− p 0 0
0 p 0 1− p 0
0 0 p 0 1− p
0 p 0 0 1− p




(3.29)

With p = x1 + x2 + x3/2, (3.22) then becomes for λ = 2

ẋ1 = −2x1 + 2x2
1 + 4x1x2 + 2x2

2 + x1x3 + x2x3

ẋ2 = −2x2 + 2x1x3 + 2x2x3 + x2
3 + 2x1x5 + 2x2x5 + x3x5

ẋ3 = 2x2 − 2x1x2 − 2x2
2 − 2x3 − x2x3 + 2x1x4 + 2x2x4 + x3x4

ẋ4 = 2x1 − 2x2
1 − 2x1x2 + 2x3 − 3x1x3 − 2x2x3 − x2

3 − 2x4

ẋ5 = 2x4 − 2x1x4 − 2x2x4 − x3x4 − 2x1x5 − 2x2x5 − x3x5

(3.30)

Due to the symmetry of the agent if its states are reversed, the equations (3.30)
should also possess this symmetry. At first sight this seems not to be the case.
E.g. ẋ1 contains a term 2x2

1, while ẋ5 does not contain the term 2x2
5. However,

x always lies in the subspace Σ5. Within this space the equations become
symmetrical, which explains the apparent paradox.

This system has three fixed points8: x(1) = (1 0 0 0 0)T, x(2) = (1
5

1
5

1
5

1
5

1
5
)T

and x(3) = (0 0 0 0 1)T. The first and last are the states of complete agreement
between the agents on alternative 0 and 1, respectively. In order to investigate
the stability of these three equilibria, we perform a linear stability analysis
around these points.

Eliminating x5 in (3.30) using
∑5

i=1 xi = 1 and linearizing (3.30) around x(1)

we get the Jacobian

J (1) =





2 4 1 0
−2 −4 0 −2
0 0 −2 2
−2 −2 −1 −2



 (3.31)

8This is shown in section 3.4.4.
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which has eigenvalues −2.732, −2, −2, 0.732. This last eigenvalue is positive
and has eigenvector (with x5 again appended) (−2.268 0.536 0.732 1 0)T. This
is a valid direction to leave the equilibrium x(1) which is therefore unstable. Due
to the symmetry the same holds for x(3).

Regarding x(2) we obtain the Jacobian

J (2) =





−1
5

9
5

2
5

0
−1

5
−11

5
2
5
−1

0 1 −2 1
1
5
−4

5
3
5
−2



 (3.32)

with eigenvalues −3.618, −1.382, −0.7 + 0.332i, −0.7− 0.332i. These all have
a negative real part and x(2) is therefore a stable equilibrium.

From this analysis we can clearly conclude that agent 1c will not solve the
binary convention problem. On the contrary, even when the population is close
to an agreement (x(1) or x(3)), the system will be driven back to the central
equilibrium x(2). This sheds a light on the stochastic dynamics we observed in
figure 3.4(c), where the population behavior seemed to fluctuate around 0.5 and
where agreement was only possible if a large enough fluctuation occurred.

3.3.2 Relation between stochastic and deterministic sys-
tem

As we originally stated, we will only say that a particular type of agent solves a
convention problem if an agreement is reached in a reasonable amount of time,
for any population size N . In other words, we require that this convergence
time does not grow too fast as a function of N . We suggested that an analysis
of the deterministic system (DS) provides enough information to decide on this
matter. We will now make this reasoning more clear.

First of all, the stochastic system (SS) can be interpreted as a noisy, per-
turbed version of the deterministic system, with the amount of noise decreasing
with the population size. This property is used further on.

Let us now investigate what properties the DS must possess if it should
always9 converge to a state of agreement (or simply ‘converges’ in the following).
We assume that the DS contains no attractors other than fixed points.10 Then,
as the space in which the dynamics takes place, Σm is compact, the necessary
and sufficient conditions for this system to converge, is that these states of
agreement are the only stable equilibria.

9With ‘always’ we mean with probability one if started from a random initial state.
10We return to this assumptions in section 3.5.
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If the DS converges, it is quite obvious that the SS will also reach a conven-
tion rather quickly for all N . The noise that enters the scene will not make it
fundamentally more difficult to reach such a state of agreement: the fact that
the deterministic system converges, implies that the system-level Markov chain
has a ‘drive’ of drift to move towards its absorbing states.

We now show that if the DS does not converge, there are regions in the state
space of the population from which the convergence time increases unacceptably
fast with increasing N . If the DS does not converge, there is at least one
stable equilibrium, say xs with basin of attraction Axs

, which is not a state of
agreement. As we already saw, this does not prevent the SS from reaching a
convention, as there is always a finite chance, no matter how large the population
or how small the noise, that the SS escapes from Axs

. By the theory of large
deviations in randomly perturbed dynamical systems (Freidlin and Wentzell,
1984), we can get an idea of how this probability to escape, scales with N .
In Maier (1992), this theory is applied to a similar setting as ours, with noise
arising as the result of a finite population resulting in an average time to escape
Tesc:

E[Tesc] ∼ exp(S0N) for N →∞, (3.33)

with S0 some constant depending on the system. Thus the time to reach a
convention for the SS, if close to xs, increases exponentially as a function of the
population size, which we consider an unacceptable characteristic of any agent
solving a convention problem.

This confirms our observation for agent 1c in figure 3.3. The population is
trapped in the basin of attraction (the whole state space in this case) of the
stable but suboptimal equilibrium x(2) and the larger the population, the more
difficult to escape from this equilibrium and reach one of the absorbing states.

We conclude our discussion by pointing out that the interpretation of the
SS as a deterministic system with added noise, is slightly misleading when con-
sidering the system-level states of agreement. For instance if all agents of type
1a in the binary convention problem are in state q1, there is no way an agent
can ever move to q2 again. This is however only an artifact of the simplicity of
our model and in that sense non-essential. For example suppose that the agents
make mistakes with some small probability. This could show up as a slightly
different behavior function f(q1) = 1 − ǫ, f(q3) = ǫ. In this case, observed
over a long time, the population will switch randomly between the system-level
state where the majority of agents is in q1 and the one where most of them are
in q3. This switching between equilibria, or equilibrium selection (Samuelson,
1997) is an interesting topic once the stable equilibria of a system are known.
Nevertheless, in this thesis, we focus on whether states in which the population
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has reached an agreement are stable equilibria in the first place and whether
there are no stable equilibria other than these.

3.4 The response function

In some occasions, the deterministic equation (3.22) will be sufficiently simple
so that its properties can be directly investigated. Unfortunately, in most cases
these dynamics will turn out to be too difficult to study. They take place in
a #Q − 1 dimensional space and the size of Q can be very large, even for the
binary convention problem. An important message of this thesis, however, is
that there exists a workaround for this problem.

With regard to the question whether an agents solves a convention problem
or not, the important properties of system (3.22) are its stationary states and
their stability. Indeed, as argued before, we say that an agent solves a convention
problem if (i) all the states in which the agents agree on a convention are stable
stationary states and (ii) all other stationary states are unstable. As we will
argue, precisely these properties can be studied by means of a so-called response
function. This function describes the average behavior an agent would exhibit
when being subjected to a fixed behavior for a long time. The response function
is thus a mapping from the behavior space onto itself. The dimensionality of the
behavior space depends only on the convention problem, not on the agent design.
Hence the response function is an analytical tool which allows to investigate
agents in a uniform way, irrespective of their internal structure. Moreover the
dimensionality of the behavior space is typically much lower than this of the
population state space. This means for instance that, in the binary convention
problem, we can predict the performance of an agent with 20 internal states
using a one-dimensional function, instead of analyzing the dynamics in a 19-
dimensional state space.

This dimension reduction holds generally. If an agent is able to adopt all
possible conventions, then he must at least have an internal state for each al-
ternative. So we have #Q ≥ #Z. A typical agent however will also have many
intermediate states between these states of pure convention. So typically we
will have that #Q is considerably larger than #Z. In CP1 through CP4 the
dimensionality of the behavior space is #Z − 1. In CP5 the gain is even more
clear: #Z and hence #Q is combinatorial in the number of objects (m) and
labels (n), while the dimensionality of the behavior space is only m(n− 1).
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3.4.1 Definition

The response function is a function φ : B → B, which maps the behavior
influencing the agent to the agent’s average response behavior.

First of all we investigate under what circumstances such a definition makes
sense. Suppose at time t = 0 an agent is in state s(0) ∈ Q. Then we assume
that this agent repeatedly interacts at times 1,2, . . . with a fixed behavior, say b

(∈ B). If the information flow during an interaction is bidirectional, the agent
should switch between roles I and II randomly. Otherwise he always takes the
role which gains the information. As a result of these interactions the agent will
stochastically traverse the state space Q:

s(0)
δ(·,b)−→ s(1)

δ(·,b)−→ s(2)
δ(·,b)−→ s(3) . . . (3.34)

Thus the behavior b defines a Markov chain on the state space Q.11 The tran-
sition probabilities of this Markov chain are described by the agent’s transition
matrix P b. The response of the agent to the behavior b is well-defined if the
probability distribution of s(k)—which are the probabilities to be in each of the
states of Q at time k—converges to a limiting distribution with increasing k,
independent of s(0). For this it is necessary and sufficient that12

lim
k→∞

(P b)
k = 1πT

b (3.35)

for some πb ∈ Σm. This πb is then the unique stationary distribution of the
Markov chain for which by definition it holds that

πT
b = πT

b P b. (3.36)

The agent’s response to b, φ(b), is then given by:

φ(b) = f(πb) =
m∑

i=1

πb,if(qi) (3.37)

using the notation (3.12) again.
The response function is defined using the stationary distribution of a Markov

chain. One could wonder why we did not simply take its uniqueness as the pre-
requisite for the response to be well-defined, instead of the stronger condition
(3.35). Indeed, for a Markov chain to have a unique stationary distribution,

11For a brief overview of the terminology and properties of finite Markov chains we refer to
Appendix B.

121 is a column vector of 1’s.
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property (3.35) is not necessary. For example the Markov chain with transition
matrix

P =

(
0 1
1 0

)

has a unique stationary distribution π = (0.5 0.5). But because P 2 = I we
have P k = P (k mod 2) so that limk→∞ P k does not exist. This chain has a peri-
odicity 2 and in general it holds that a Markov chain with a unique stationary
distribution for which (3.35) does not hold, will have a periodicity p greater
than 1. This means that the distribution of s(k), even for large k, will depend
on the value of k mod p. It is exactly this phenomenon we wish to avoid and
which (3.35) precludes.

We will name an agent ergodic if (3.35) holds for every b ∈ Σm.13 An
ergodic agent thus has a well defined response function. In section 3.5.2 we will
discuss in more detail what it means for an agent to be ergodic and why we
believe it is an important property. For now it suffices to say that an ergodic
agent always keeps its same level of adaptiveness, irrespective of its ‘age’.

To avoid confusion: ergodicity at the agent level as we have defined it has
little to do with ergodicity at the global system level. An agent being ergodic
does not imply at all that the multi-agent system is ergodic as well. The reason
is that we defined ergodicity in the context of a fixed behavior. In a multi-agent
system this behavior changes as well. In fact, ergodicity at the system-level is
an undesirable property, as this would imply that a state in which all agents
agree on a convention cannot be an absorbing state.

The definition of the agent response in terms of the stationary distribution
does not mean that we have to explicitly calculate this stationary distribution to
compute an agent’s response to a certain behavior. Indeed, precisely the ergodic
property implies that the average of the agent’s behavior over subsequent sam-
ples of the Markov chain is equal to the average with respect to the stationary
distribution. In other words, the agent response can be empirically estimated
by letting an agent interact with a particular behavior and observe the average
behavior it exhibits. In the subsequent chapters we will occasionally investigate
an agent in this way, if the analytical calculation of the response function is too
difficult.

We now investigate what this response function can learn us about the sta-
tionary states of the deterministic system and their stability.

13A minor caution: ergodicity in the context of Markov chains is a slightly stronger condition
than (3.35), but they are equivalent if transient states are ignored.
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3.4.2 Fixed points

A fixed point of the response function is, by definition of φ, a behavior which
is reproduced by an agent when interacting with it. We will argue that every
fixed point of φ corresponds with a stationary state of the deterministic system.
But also the reverse is true: every stationary state of the deterministic system
has a behavior that is a fixed point of φ. This is stated more formally in the
following

Proposition 1 The functions f (∈ Σm → B) and π (interpreted as a function
B → Σm) provide a one-to-one correspondence between the equilibria of system
(3.22) and the fixed points of φ.

The intuition behind this property is the following. Let b be a fixed point
of φ, i.e. b = φ(b). Now suppose the population behavior has been equal to b

for quite some time. Then each agent in the population will traverse its state
space according to the Markov chain P b. As the agents are ergodic, this Markov
chain has a unique stationary distribution πb over Q. Each agent’s state is a
sample of this distribution. Consequently the larger the population, the better
the collection of states of the agents will resemble πb. But if the collection of
states of the agents is close to πb, the expected new population behavior will
again be close to b, as we have, with N the population size and sj ∈ Q the state
of the jth agent:

b = f(πb) (3.38)

=
m∑

i=1

f(qi)πb,i (3.39)

≈ 1

N

N∑

i=1

f(si) (3.40)

Thus the average behavior of the population is again b and a fixed point of
the agent response function is a stationary state of the deterministic system.
Conversely, let x be an equilibrium of the deterministic system. The population
behavior in x, f(x), then necessarily must induce a Markov chain over Q with
stationary distribution again x, otherwise x could not have been an equilibrium
of (3.22). Hence f(x) must be a fixed point of φ.

What kind of fixed points can we expect to appear? First of all, if an agent
solves a convention problem, each state of agreement in the deterministic system
should be an equilibrium. By proposition 1 it follows that the corresponding
behavior will be a fixed point of φ. In other words, if an agent is confronted
with an optimal behavior, in the end he should also adopt this behavior. On the
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other hand, there will always exist suboptimal behaviors that are fixed points
of φ as well, because they arise naturally by the symmetry of the agents, as
defined in section 3.1.4.

To see this, let G be the CPG of a convention problem at hand. If an agent
commutes with every element of G, it follows that the response function will
also commute with these permutations. More precisely, let g ∈ G and b ∈ B
then

φ(g(b)) = g(φ(b)). (3.41)

This implies that if b has a certain symmetry (it remains unchanged by
permutation g: b = g(b)), this symmetry ought to be preserved under the agent
response function as we have

φ(b) = φ(g(b)) = g(φ(b)). (3.42)

The set of behaviors invariant under all permutations from G is always a
singleton and we write its element as bc ∈ B. By (3.42) it then follows that bc
is a fixed point of φ. Moreover, bc cannot be an extremal point of B and can
therefore not be an optimal behavior.14 So there always exists at least one fixed
point of φ that is not an optimal behavior.

For example in the binary convention problem, we have bc = (0.5 0.5) which
is necessarily a fixed point of φ, or φ(0.5) = 0.5, for any symmetrical agent.
Generally, if we define τ c = ( 1

n
. . . 1

n
), the behavior bc = τ c in a flat convention

space of size n will always be a fixed point of the response function. For a
structured convention space we consider the labeling problem with 3 objects
and 3 labels, so that B = (Σ3)

3. In this case we have bc = (τ c τ c τ c) which is
a fixed point of the response function.

One can view the previous results as a special case of a more general property.
Every subgroup G′ of G is associated with a subspace BG′ of B which is invariant
under permutations from G′. The previous discussion implies that in particular
BG = {bc}. BG′ is necessarily invariant under the agent response function, by
(3.42). It can be argued that any such BG′ forms a compact, convex set, so that
Brouwer’s fixed point theorem applies and the function φ, restricted on BG′ ,
must have at least one fixed point within BG′ . As bc ∈ BG′ for any subgroup
G′, it could be that BG′ has only one fixed point which is then necessarily bc,
but there could also exist other fixed points within BG′ .

To illustrate this, consider any convention problem with three alternatives
and a flat convention space. In this case B = Σ3, G = S3 and we consider
the subgroup G′ of order 2, generated by permutation (2 1 3). We then have
BG′ = {(1−z

2
1−z
2
z) | z ∈ [0, 1]}. τ c ∈ BG′ is necessarily a fixed point and for an

14Extremal points of B do not contain symmetries.
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agent solving the convention problem (0 0 1) will also be a fixed point. There
could however also exist other fixed points within this set—we will see examples
of this in section 5.1.

Given the presence of these inevitable suboptimal fixed points (at least one,
bc), the crucial question is whether they are repelling or attracting equilibria in
the deterministic system. In the former case the population will be driven away
from the suboptimal state and have a chance to reach a state of agreement. In
the latter case the escape from the suboptimal fixed point will take very long
as the population size increases, as we discussed before.

3.4.3 Stability

We have shown that all stationary states of the deterministic system correspond
to a fixed point of the response function. We will now argue why we believe
that also the stability of these equilibria can be determined solely by analyzing
the properties of φ.

We start with recapitulating our original stochastic model. In a certain
system-level state, each agent has a particular internal state in Q. These states
define the agent’s behaviors by the behavior function f . The individual agent’s
behaviors constitute the population behavior (which is the average behavior
of all agents). The agents interact randomly with each other and make state
transitions according to the state transition function δ. As we use the global
interaction model, the population behavior contains all information necessary
to know how an agent will be influenced.

Now we take the viewpoint of one particular agent and make abstraction
of the states of the other agents by only considering the (global) population
behavior they induce. In each interaction, this agent is stochastically influenced
by the population behavior. On the other hand, as a member of the popula-
tion, an agent’s behavior constitutes and influences the population behavior.
We therefore assume that the agent will slightly pull the population behavior
towards its own. Let us for a moment consider discrete time. If at time k the
agent is in state s(k) and the population behavior is b(k), this results in the
following system of coupled stochastic difference equations:15

b(k + 1) = (1− β)b(k) + βf(s(t)) (3.43)

si+1 = δ(s(k), b(k)), (3.44)

with 0 < β < 1 a constant which parametrizes the degree of influence an agent
has on the population. One can think of β as being more or less inversely
proportional to the population size. Now we go a step further and assume

15Stochastic because δ may be stochastic.
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that β is small. This means that b will change slowly as a function of k and
hence that the agent has many interactions with a roughly constant population
behavior. If we assume the agent is ergodic then its average response f(si) will
approach φ(b). In this case we can replace equations (3.43) and (3.44) by the
following deterministic recurrence relation:

b(k + 1) = (1− β)b(k) + βφ(b). (3.45)

Moreover if we define b(t) = b(k∆t) = b(k) and let ∆t, β → 0 with β
∆t

= α, a
constant, then we can transform (3.45) into the following ordinary differential
equation:

ḃ = α(φ(b)− b). (3.46)

We will further refer to (3.46) as the response system (RS). Not surprisingly
the equilibria of system (3.46) are the fixed points of φ and correspond therefore
to the stationary states of the deterministic system. But what is more, the
derivation of (3.46) suggests that also the stability of these fixed points is the
same in the DS and the RS.

At present, we do not have a general, rigorous argumentation underpinning
this intuitive explanation. Yet, at least for the binary convention problem (for
which (3.46) is one-dimensional), we do have proof that the instability of the
response function implies the instability of the deterministic system. This is
stated in the following

Theorem 2 In the binary convention problem, if φ(p∗) = p∗ and φ′(p∗) > 1,
then πp∗ is an unstable equilibrium of the deterministic system (3.22).

3.4.4 Examples

All the agents 1a, 1b and 1c are ergodic. They are aperiodic as can for instance
be seen from the loops in q1 for each agent and they all have a unique stationary
distribution. Hence each agent has a well-defined response function.

Let us illustrate the calculation of the stationary distribution and response
function for agent 1a. The agent’s transition matrix is given by (see also (3.6))

P p =




p 1− p 0
p 0 1− p
0 p 1− p





Hence for a fixed behavior p (the probability that the agent receives alternative
0), this matrix defines a Markov chain on the state space (q1, q2, q3). The station-
ary distribution πp = (x1, x2, x3)

T of this Markov chain must obey πT
p = πT

pP p.
We can also graphically derive the equilibrium equations. Figure 3.6 shows the
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p

p

p

1− p
1− p1− p

q1 q2 q3

Figure 3.6: Calculating the stationary distribution of agent 1a.

state diagram of the agent together with two separating lines. In equilibrium,
the net ‘transition flux’ through each of these lines must be zero, or

x1(1− p) = x2p

x2(1− p) = x3p

Substituting x3 = 1− x1 − x2 straightforward algebra then yields

x1 =
p2

1− p+ p2

x2 =
p(1− p)

1− p+ p2

x3 =
(1− p)2

1− p+ p2
.

The response function is given by φ(p) = x1 + x2/2 or

φ(p) =
p(1 + p)

2(1− p+ p2)
.

Table 3.3 shows the stationary distribution and response function for each
of these three agents. These graphs support our previous findings.

For agent 1a, the response function has three fixed points, 0, 0.5 and 1. 0
and 1 are stable equilibria of the response system and 0.5 is unstable.16 By
proposition 1, the three fixed points of φ correspond to the stationary states of
the deterministic system: π0 = (0 0 1)T, π0.5 = (1

3
1
3

1
3
)T and π1 = (1 0 0)T

which we already encountered in our analysis of the DS defined by this agent
in section 3.3.1. Moreover, the stability of these equilibria in these two system
seems to be preserved. With regard to unstable equilibrium 0.5 versus π0.5 the
instability of the latter in the DS follows immediately from theorem 2.

Concerning agent 1b, we observe that the response function is the identity
function. This confirms our previous finding that the deterministic system has
a continuum of neutral equilibria.

16This can be seen from the derivative of φ in this point.
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agent 1a

πp =
(

p2

1−p+p2)
, p(1−p)

1−p+p2 ,
(1−p)2
1−p+p2

)T

φp = p(1+p)
2(1−p+p2)

0
0

1

1p

φ(p)

agent 1b

πp = (p, 1− p)T

φp = p

0
0

1

1p

φ(p)

agent 1c

πp =
(

p2

1+p−p2 ,
p(1−p)
1+p−p2 ,

p(1−p)
1+p−p2 ,

p(1−p)
1+p−p2 ,

(1−p)2
1+p−p2

)T

φp = (3−p)p
2(1+p−p2)

0
0

1

1p

φ(p)

Table 3.3: The stationary distribution πp and the response function φ for
each of the agents 1a, 1b and 1c.
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For agent 1c the analysis is analogous to agent 1a, except that the stabil-
ity/instability of equilibria is reversed. This also means that in this case the
instability of π0 and π1 follows from theorem 2.

3.5 Discussion

This chapter described the following transitions between systems:

system state space
stochastic system with tran-
sition rates as defined in
(3.14)

U (as defined in
(3.7))

↓
deterministic system (3.22) Σm

↓
response system (3.46) B

with an argumentation why the response system allows to predict that prop-
erty of the stochastic system we are interested in, namely convergence to a
convention.

We now discuss in more detail some concepts we have introduced and as-
sumptions we have made.

3.5.1 Finite state space

In the derivations in this chapter we always assumed that the state space of an
agent was finite. This had the advantage of keeping the exposition relatively
straightforward. It is however not difficult to imagine that the derivation could
be conducted as well for infinite countable and even uncountable state spaces
(e.g. a subset of R

n). This would of course require the redefinition of the
response function and a modification of the conditions for its existence. Instead
of a finite Markov chain, an agent interacting with a fixed behavior would then
induce an infinite Markov chain (in case of a countable state space) or a Markov
process (in case of a continuous state space). As ergodicity is also defined in
these cases (see e.g. Grimmett and Stirzaker (1992)), this would remain one of
the conditions for the response function to be well-defined.

In the subsequent chapters we will sometimes encounter agents with an an
infinite state space on which we also apply the response analysis.
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3.5.2 Ergodicity

The definition of an agent’s response to a behavior requires that there exists a
unique limiting distribution over the agent’s state space when interacting with
any fixed behavior. We now argue why we think ergodicity is a good property
for an agent to have. We discuss the case of finite and infinite state spaces in
turn.

Suppose an agent is not ergodic.17 In the case of a finite state space, because
there always exists at least one stationary distribution (see Appendix 54), this
means that the latter is not unique. In other words, there is at least one behavior
b ∈ B which induces a Markov chain that has more than one closed irreducible
subset (CIS in the following). However, because these closed irreducible subsets
do not depend on the precise values of the transition probabilities P b, but only
on the fact whether they are strictly positive or not, this means that there will be
more than one CIS for a wide range of behaviors, not only for b. By definition,
once an agent has entered a CIS, it will never leave that set again. As there
are multiple non-overlapping CIS’s, it depends on chance which of these sets
the agents will enter and stay in forever. It could be that each of these sets is
symmetrical on its own and has therefore no bias towards one of the alternatives.
In this case, we could have redefined the agent as just consisting of one of these
CIS’s. Let us now suppose, however, that these CIS’s have some sort of bias in
the convention space. By symmetry of the agent, there must then exist different
CIS’s with a different bias. As different agents can end up in different CIS’s,
this could make the reaching of a convention much more difficult. If, in the
worst case, a CIS would exclude an alternative from becoming the convention,
this would even render the establishing of a convention impossible if agents end
up in incompatible CIS’s.

In infinite state spaces, apart from the existence of multiple stationary dis-
tributions, an agent can also be non-ergodic because there does not exist a
stationary distribution at all. An example can be found in the application of
Polya urn processes in the modeling of the evolution of communication in Ka-
plan (2005), which we discuss in section 5.2.2. In contrast to the finite case,
agents with an infinite state space, even when being non-ergodic, could be still
quite capable of reaching a convention in a reasonable time. But as the trajec-
tory an agent’s state describes, is path-dependent (Arthur, 1994), the agent’s
adaptiveness will decrease over time.

The reason, then, we think ergodicity is a good property is that it guarantees
that the capability of an agent to cope with a new situation does not diminish
with its ‘age’. Suppose we change the interaction model for a moment and define

17We assume that this lack of ergodicity is due to the existence of none or multiple stationary
distributions, not due to a periodicity greater than 1.
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different ‘islands’ on which agents interact randomly, but with no interactions
between islands. Then, after every island has reached a (possibly different)
convention, the agents are scrambled and they start all over again. An ergodic
agent will be able to adapt to this new situation, irrespective of its ‘age’, in
opposition to a non-ergodic agent.

3.5.3 Adaptiveness

In the previous discussion on ergodicity we argued that the capability of ergodic
agents to adapt to a new situation does not decrease with the ‘age’ of the agent.
Yet, also within the class of ergodic agents there are differences in the speed
at which they can adapt to a new situation, a quality which we name the
adaptiveness of an agent. Technically speaking, the adaptiveness of an agent
relates to the spectral gap18 of its associated Markov chain, as this determines
the speed of convergence of a Markov chain to its stationary distribution.

3.5.4 Amplification

Generally speaking, one can interpret the functioning of an agent as follows:
through interactions with other agents, an agent ‘samples’ the current average
behavior in the population, and through its behavior function the agent ‘for-
mulates’ a response behavior. If an agent solves a convention problem, it must
be able to escape from any behavior that is a suboptimal fixed point of the re-
sponse function. This means that the agent should ‘amplify’ (small) deviations
from these equilibria, making them unstable. Therefore we will also sometimes
say that an agent which solves a convention problem is amplifying.

Similar to the fact that an ergodic agent can be adaptive to different extents,
we will also distinguish between different degrees in which an agent can be
amplifying.

3.5.5 Absence of limit cycles

In principle a stability analysis of the stationary states of system (3.22) is not
sufficient to prove convergence, as other types of attractors like limit cycles
or chaotic attractors will remain undetected. However, for the agents we will
introduce for the binary convention problem in the next chapter, we will be able
to argue that stable attractors other than fixed points are impossible. This is
because the systems can be shown to be monotone, in the sense of monotone

18The spectral gap is the difference between the largest—1 in the case of a stochastic
matrix—and second largest eigenvalue of a matrix.
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dynamical systems as described in Smith (1995). Monotone dynamical systems
in a bounded space are generally known to converge to one of their equilibria.

While is not trivial and maybe impossible to establish monotonicity for sys-
tems resulting from higher dimensional convention problems (e.g. CP2), we
believe the symmetry of the agents (and consequently the response function)
puts enough constraints on the dynamics to exclude (stable) limit cycles.

3.6 Proofs

Proof of proposition 1. If x∗ is an equilibrium of (3.22), then x∗P f(x∗) = x∗.
From this follows that x∗ is the unique stationary distribution corresponding to
the behavior f(x∗), or by definition of π,

x∗ = πf(x∗) (3.47)

Applying f to both sides of (3.47) yields

f(x∗) = f(πf(x∗)) = φ(f(x∗)) (3.48)

by definition of φ. Hence b∗ , f(x∗) is a fixed point of φ and (3.47) shows
that πb∗ = πf(x∗) = x∗.

If b∗ is a fixed point of φ then

b∗ = φ(b∗) = f(πb∗) (3.49)

Applying (3.36) to b∗ and substituting (3.49) in the argument to P we get
πb∗ = πb∗P f(πb∗ ). Thus x∗ , πb∗ is a stationary state of (3.22) and (3.49)
shows that f(x∗) = f(πb∗) = b∗.

We now proceed to the proof of theorem 2 for which we need some prepara-
tory results. We first investigate for a general Markov chain with transition
matrix P and stationary distribution π, how this stationary distribution will
change as a result of a small change in P . If π + ∆π is the stationary distri-
bution of P + ∆P we have by definition that

πT + ∆πT = (πT + ∆πT)(P + ∆P ) (3.50)

= πTP + ∆πTP + πT∆P + ∆πT∆P (3.51)

Using the fact that πT = πTP and ignoring the quadratic term ∆πT∆P ,
(3.51) becomes

∆πT(I − P ) = πT∆P (3.52)
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The inverse of I −P does not exist, as 1 is a right-eigenvector with eigenvalue
0. We know however that any valid ∆π will satisfy ∆πT1 = 0 (as both π and
π + ∆π are elements of Σm). Therefore we can add any matrix to I − P as
long as its columns are constant, or in other words, any matrix of the form 1vT

with v ∈ R
m. If we take v = π, then I − P + 1vT is invertible as is shown in

proposition 3. In this case the matrix

Z = (I − P + 1πT)−1 (3.53)

is called the fundamental matrix (see Kemeny and Snell (1976)). Applying this
modification to (3.52) we finally get

∆πT = πT∆PZ. (3.54)

Let T = {x ∈ R
n | xT1 = 0}.

Proposition 3 All eigenvalues of I − P + 1πT are strictly positive. Conse-
quently Z = (I−P +1πT)−1 is well-defined and its eigenvalues are also strictly
positive.

Proof. As P is stochastic and irreducible λ1 = 1 is an eigenvalue of P of
multiplicity 1. For all eigenvalues {λi} holds |λi| ≤ 1 (for λi 6= λ1 and P
aperiodic, the strict inequality holds, but we don’t need this result). The left
eigenvector corresponding to 1 is π, the unique stationary distribution of P .
For all other left eigenvectors x with eigenvector λi 6= 1 holds x ∈ T :

xTP = λix
T ⇒ xTP1 = λix

T1 (3.55)

⇔ xT1 = λix
T1 (3.56)

⇔ λi = 1 ∨ xT1 = 0 (3.57)

For the eigenvalues {λ′i} of I −P holds λ′i = 1−λ′i with the same left eigenvec-
tors, so λ′1 = 0 and all other eigenvalues are strictly positive. All left eigenvectors
x ∈ T of I−P with eigenvalue λ are also left eigenvectors with the same eigen-
value of I − P + 1πT. So the only eigenvalue that differs between I − P and
I −P + 1πT is λ′1 = 0. I −P has the right eigenvector 1 corresponding to λ′1.
1 is also a right eigenvector of I −P +1πT, however with eigenvalue 1, so that
all eigenvalues of I − P + 1πT are strictly positive.

Lemma 4 For any real n × n-matrix A, if n is odd and det(A) > 0 or n is
even and det(A) < 0 then A has at least one eigenvalue λ with Re(λ) > 0.
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Proof. (by contraposition) Let {λi} be the n eigenvalues of A of which the first
k are complex. As A is real, all complex eigenvalues come in conjugate pairs
and k is even. It holds that det(A) =

∏n
i=1 λi. Because λλ∗ > 0 for any λ 6= 0

we have sgn(det(A)) = sgn(
∏n

i=k+1 λi).
Suppose all eigenvalues of A have a negative real part. In particular the real

eigenvalues are then negative and we have sgn(det(A)) = (−1)n−k = (−1)n.
Thus det(A) > 0 if n is even and det(A) < 0 if n is odd.

Property 5 Given a linear system ẋT = xTA with A1 = 0T and x(0) ∈ T .
Then x(t) ∈ T ∀t ≥ 0 and the stability of an equilibrium x∗ ∈ T , with respect
to perturbations in T , is determined by the eigenvalues λ of A which have a
left-eigenvector in T .

Proof of theorem 2. Let x∗ = πp∗ and P ∗ = P p∗ . We first rewrite φ′(p∗).
We have that

φ′(p∗) =
∂φ(p)

∂p

∣∣∣∣
p=p∗

(3.58)

=
∂f(π(p))

∂p

∣∣∣∣
p=p∗

(by definition) (3.59)

=
∂πT

p

∂p

∣∣∣∣∣
p=p∗

∂f(x)

∂x

∣∣∣∣
x=x∗

(chain rule) (3.60)

Using the shorthand ∂f(x∗)
∂x

for ∂f(x)
∂x

∣∣∣
x=x∗

and using (3.54), (3.60) becomes

φ′(p∗) = x∗T
P ′
p∗Z

∂f(x∗)

∂x
(3.61)

where Z = (I − P ∗ + 1xT)−1.
Now we investigate the stability of x∗ by linear stability analysis. Therefore

we linearize the system (3.22) around the equilibrium, with x = x∗ + ∆x,
resulting in the linear system

˙∆xT = ∆xTA (3.62)

with

A =
∂

∂x

(
x
(
P f(x) − I

))∣∣∣∣
x=x∗

(3.63)

= P ∗ − I +
∂f(x∗)

∂x
x∗T

P ′
p∗ (3.64)
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The sums of all rows of A are zero:

A1 =

(
P ∗ − I +

∂f(x∗)

∂x
x∗T

P ′
p∗

)
1 (3.65)

= 1− 1 + 0 = 0 (3.66)

The dynamics of (3.22) are m− 1-dimensional and for any admissible ∆x will
hold that ∆xT1 = 0. Similar to (3.52), we may then add any matrix of the
form 1vT to A without changing the dynamics. Choosing v = −x∗ we get

Â = P ∗ − I − 1x∗T +
∂f(x∗)

∂x
x∗T

P ′
p∗ (3.67)

= −Z−1 +
∂f(x∗)

∂x
x∗T

P ′
p∗ (by definition of Z) (3.68)

=
(
− I +

∂f(x∗)

∂x
x∗T

P ′
p∗Z

︸ ︷︷ ︸
,Y

)
Z−1 (factoring out Z−1) (3.69)

As Y is an outer product, it has rank 1, and its only nonzero eigenvalue is found
by19

tr(Y ) = tr

(
∂f(x∗)

∂x
x∗T

P ′
p∗Z

)
(3.70)

= x∗T
P ′
p∗Z

∂f(x∗)

∂x
(tr(AB) = tr(BA)) (3.71)

= φ′(p∗) (by (3.61)) (3.72)

Hence Y −I has eigenvalues −1 with multiplicitym−1 and φ′(p∗)−1 > 0. So we

have that sgn(det(Y −I)) = (−1)n−1. Now, with det(Â) = det(Y −I) det(Z−1)
and det(Z−1) > 0 by proposition 3, it follows that

sgn(det(Â)) = sgn(det(Y − I)) sgn(det(Z−1)) (3.73)

= (−1)n−1 (3.74)

From lemma 4 we may then deduce that Â has at least one eigenvalue λ∗ with
Re(λ∗) > 0.

If we now can show that λ∗ has a left eigenvector in T , then by property 5
we can conclude that the system (3.62) is unstable. Let us therefore suppose we

19The trace of any square matrix equals the sum of its eigenvalues (Horn and Johnson,
1985).
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have a left eigenvector v /∈ T . Up to scaling, v can always be put in the form
1 + y with y ∈ T and thus vT1 = 1. We then have, for some λ,

vTÂ = λvT ⇒ vTÂ1 = λvT1 (3.75)

⇔ vT(A− 1x∗T)1 = λ (3.76)

⇔ λ = −vT1x∗T1 (by (3.66)) (3.77)

⇔ λ = −1 (3.78)

As Re(λ∗) > 0, λ 6= λ∗ which implies that any left eigenvector associated with
λ∗ must lay in T . This concludes the proof.



Chapter 4

Convention problems with
complete information

In this chapter we analyze the binary and multiple convention problem. These
are both convention problems with a flat convention space and in which, during
an interaction, agent II learns the current preference of agent I.

From an agent design perspective, these convention problems do not pose
many difficulties. We will give several examples of agents which solve CP1 and
CP2. But given a variety of agents that solve a convention problem, another
question arises: Is their some property, say P, which all these agents share which
explains their success in solving the problem? In other words, can we delineate
a class of agents—defined by the agents having P—solving the convention prob-
lem?

One could of course directly define

P = “the deterministic system the agent induces, always converges
to a state of agreement”.

We are however interested in a property which is more concrete and relates
directly to the definition of the agent in terms of its states, behavior function
and transition function.

This chapter presents our current results of our quest for this property.
Although CP1 is a special case of CP2, we discuss these two convention problems
separately, in sections 4.1 and 4.2, respectively. The result obtained for CP1 is
of a different nature than that for CP2. We explain the relation between them
in section 4.3.

69
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4.1 Binary convention problem

We already encountered an agent solving CP1: agent 1a. This agent has an
S-shaped response function with the only fixed points 0, 0.5, 1. We argued that
this shape of the response function is sufficient for an agent to solve CP1.

We now present three new classes of agents for which we directly show that
they solve CP1, or for which we have at least strong evidence that they do.
Based on these different types of agents, we will in section 4.1.2 undertake the
challenge to find a characteristic that links all these different agents and which,
in itself, explains why they solve CP1.

4.1.1 Three classes of agents

We start by introducing a class of agents which are a natural extension of agent
1a:

An agent with linear state space

Agent 1d The agent has k states Q = {q1, . . . , qk} with transition function

δ(qi, 0) =

{
qi−1 if i ≥ 2

q1 if i = 1
(4.1)

δ(qi, 1) =

{
qi+1 if i ≤ k − 1

qk if i = k
(4.2)

or graphically

0

1

0

0

1

0

1

0

1

1...q1 q2 qk-1 qk

and behavior function

f(qi) =






1 if i < (k + 1)/2

0.5 if i = (k + 1)/2

0 if i > (k + 1)/2.

(4.3)

It is easy to verify that agent 1d equals agent 1a for k = 3 and agent 1b for
k = 2. The agent solves the convention problem if k ≥ 3, as we now show. We
first determine the stationary distribution πp over Q given a behavior p. By the
linear structure of Q we can immediately derive that

πp,i (1− p) = πp,i+1 p for i < k (4.4)
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from which follows

πp,i =

(
1− p
p

)i−1

πp,1. (4.5)

We then have

k∑

i=1

πp,i = πp,1

k∑

i=1

(
1− p
p

)i−1

(4.6)

= πp,1
(1− p)k − pk
pk−1(1− 2p)

= 1 (4.7)

from which we can derive πp,1 which yields, using (4.5),

πp,i =
pk−i(1− p)i−1(1− 2p)

(1− p)k − pk (4.8)

Now, by (4.3), φ is given by

φ(p) =

{∑k/2
i=1 πp,i if k is even

∑(k−1)/2
i=1 πp,i +

1
2
πp,(k+1)/2 if k is odd

(4.9)

which gives

φ(p) =






1

1+( 1−p
p

)k/2 if k is even

2(1−p)−( 1−p
p )

k+1
2

2
(
1−( 1−p

p )
k
)
(1−p)

if k is odd
(4.10)

Figure 4.1 shows the response function for various values of k. One clearly
observes that, from k ≥ 3, the equilibrium 1/2 becomes unstable and 0 and 1
stable, so that this agent solves CP1. Or quantitatively,

φ′(1/2) =

{
k
2

if k is even
k2−1
2k

if k is odd
(4.11)

and

k 1 2 3 4→∞
φ′(0) (= φ′(1)) 0 1 1/2 0
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0
0

1

1

1

3

2

5
10

p

φ(p)

Figure 4.1: The response function of agent 1d for several values of k.

A queue agent

We define the following agent already in the context of the multiple convention
problem for later use.

Agent 2a The state space isQ = Zk. An agent’s state acts as a first-in-first-out
queue so that δ((z1, z2, . . . , zk), z

∗) = (z2, . . . , zk, z
∗). The agent prefers the

alternative that occurs most frequently in its queue, choosing randomly if
there are ties. We write di(s) for the number of times alternative i appears
in a queue s. The agent commutes with any g ∈ Sn by g((z1, z2, . . . , zk)) =
(g(z1), g(z2), . . . , g(zk)).

For example for k = 3 we get the following state diagram:

110

000 100 010

001

101 011 1110

0

0
0

00

0

1

1

1

1
1

1

1

1

0

It can easily be seen that for k = 1 the agent becomes the imitating agent.

We now calculate the response function of this agent in the context of CP1.
The probability to be in a state (queue) s, given that the queue contains d0(s)
0’s and d1(s) = k−d0(s) 1’s, is simply πp(s) = pd0(s)(1−p)d1(s). For any j, there
are

(
k
j

)
queues containing exactly j 0’s (or 1’s). For k odd, the agent’s response
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7

p

φ(p)

Figure 4.2: The response function of agent 2a for several values of k.

is the probability to be in state (queue) with more 0’s than 1’s, i.e.

φ(p) =

(k−1)/2∑

j=0

(
k

j

)
pk−j(1− p)j (4.12)

It can be shown that the response function in the case of an even queue length
k equals the response in case of queue with length k − 1. To our knowledge,
the right-hand side of (4.12) does not have a simple analytical expression for
general k, but these are the first few response functions:

k φ(p)
1,2 p
3,4 p2(3− 2p)
5,6 p3 (10− 15p+ 6p2)
7,8 p4 (−20p3 + 70p2 − 84p+ 35)

These are also shown in figure 4.2 It is remarkable that not only for k = 1
but also for k = 2 the response function is the identity function, and the agent
consequently does not solve CP1. After all, for k = 2 the agent has 4 states
which is more than agent 1a has, and this latter does solve the problem. We
return to this point later. Figure 4.2 suggests that for all k ≥ 3 the response
function will be S-shaped and the agent will hence solve CP1.

A ∆-agent

The following agent is also introduced in the context of CP2 for later use:
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0
0

1

1

0.02

0.2

0.05

0.1

p

φ(p)

Figure 4.3: The response function of the ∆-agent for ∆+ = 0.1 and varying
∆− as marked in the graph.

Agent 2b For each alternative z ∈ Z, the agent keeps a score in [0, 1]. Hence
Q = [0, 1]n. When observing an alternative z in an interaction, the agent
increases the score of that alternative with ∆+ and decreases the scores
of the other alternatives with ∆− with saturation to keep scores in [0, 1].
Or formally:

δ((u1, . . . , un), z) =
(
(u1−∆−)↑0, . . . , (uz+∆+)↓1, . . . , (un−∆−)↑0

)

The agent prefers the alternative with the highest score, choosing ran-
domly if there are ties. ∆+ and ∆− are assumed to have a rational ratio.
The agent commutes with any g ∈ Sn by directly applying g to a state
u ∈ B.

This last assumption implies that there exists a real number a > 0 which divides
both ∆+ and ∆−. After a score hit 0 or 1 for the first time, it either is a multiple
of a (if it last hit 0) or 1 minus a multiple of a (if it last hit 1). Therefore the
space of actual states is in fact finite and the framework laid out in Chapter 3
is applicable.

Figure 4.3 shows the response for ∆+ = 0.1 and ∆− taking the values 0.02,
0.5, 0.1 and 0.2. The effective number of states in these cases are respectively
476, 160, 11 and 47. The graphs suggest that the ∆-agent solves CP1. We
also see for the first time that the response function is not necessarily concave
(convex) in [0, 0.5] ([0.5, 1]).
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4.1.2 A characterization of agents solving CP1

Now that we have presented several types of agents solving CP1, we face the
task of finding a common underlying feature of all these agents which explains
their success.

Let us for a moment investigate the state diagrams of agent 1a, the queue-
agent and the linear agent. The states are always ordered so that the leftmost
state is the (only) state having a cycle under a 0 transition and the rightmost
state a cycle under a 1 transition. Also, if an agent is in a state on the left (right)
part of the diagram he always prefers alternative 0 (1) and if there is a central
state, he randomly chooses between 0 and 1. Moreover, except for the left- and
rightmost states, it holds that all 0-arrows go to the left and 1-arrows to the
right. Intuitively it is tempting to assume that these are sufficient conditions
for an agent to solve the binary convention problem. After all, when making a
0-transition an agent’s own preference for alternative 0 can only increase and
one ‘gets closer’ to the leftmost state, and vice versa for 1-transitions. So there
seems to be a positive feedback loop for deviations either to the right or left.

Surprisingly however (at least initially for the author), these conditions turn
out not to be sufficient. In fact, agent 1c already serves as a counterexample
because it has all the aforementioned properties, while the analysis in section
3.3.1 showed that 1/2 is a stable equilibrium and 0 and 1 are both unstable
equilibria of the response system. So apparently something is missing.

The fact that the mentioned conditions are far from sufficient for an agent
to solve CP1 becomes even more blatant in the following example:

Agent 1e The agent has 8 states: Q = {q1, . . . , q8} with the following state
diagram:

q8q7q6q4q1 q2 q5q30

0 0

0

0

0

0 0

1 1

1

1

1

1 1

1

Further we have f(q1) = f(q2) = f(q3) = f(q4) = 1 and f(q5) = f(q6) =
f(q7) = f(q8) = 0. The agent commutes with g = (2 1) by g(qi) = q8−i+1.

This agent has response function

φ(p) =
p (2p4 − 5p3 + 9p2 − 8p+ 3)

p2 − p+ 1
(4.13)
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Figure 4.4: The response function of agent 1e.

which is shown in figure 4.4. Seemingly φ(p) not only doesn’t have an S-shape,
it is even not everywhere increasing. So even if all 0-arrows go to the left and all
1-arrows to the right and one increases the probability (p) to make transitions
to the left and decreases the probability to make transitions to the right, it may
happen that the probability to be in the left half of the state space decreases.
(φ′(1/2) = −1/6)

Our intuitive (but flawed) reasoning that the mentioned property should be
sufficient for an agent to solve CP1, was essentially based on the idea that 0-
transitions lead to states closer to the leftmost state and 1-transition lead to
states closer to the rightmost state. Maybe this idea was not so bad per se, yet
we should reconsider the term ‘closer’. If we examine the transition diagrams of
the agents 1c and agent 1e once again we can start to get an idea of what might
go wrong. For agent 1c, although q4 is more to the left than q5, a 2-transition
from both states reverses the order: q3 = δ(q4, 1) is more to the right than
q2 = δ(q5, 1). In other words, the 0-arrow from q5 ‘jumps over’ that from q4.
Similarly for agent 1e, the 0-arrow from q8 jumps both over that from q6 and q7.
This means that linear order we gave to the states does not necessarily match
the ‘real’ distance from a state to either the leftmost or rightmost state.

Given these observations, one could wonder whether the condition that the
0- and 1-arrows, apart from going to the left/right, do not ‘jump’ over one
another is sufficient for an agent to solve CP1. As will turn out later on, the
answer is positive.

The problem that remains with this characterization is that it is not clear
how it applies to the queue-agent and the ∆-agent. With regard to the queue-
agent with k = 3 with transition diagram shown on p. 72, if we linearly order
the states from left to right as in the diagram, i.e. with 001 left of 110, then the
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condition is not fulfilled: the 0-arrow from 110 jumps over that from 001. If we
swap the positions of 001 and 110 this is solved. However, then the state 001

with behavior 1 ends up in the right part and vice versa for state 110, which
violates our first assumptions. With regard to the ∆-agent, it is even more
difficult to envision how to put the states in a linear order so that they fulfill
all the constraints.

The solution lies in relaxing the assumption of a linear order on the states.
It will turn out that a partial order on the states which is ‘compatible’ with the
transition function is sufficient. We first define precisely what we mean with
‘compatible’. We shortly write δ0 and δ1 for the functions δ(·, 0), δ(·, 1) : Q→ Q.
All definitions and propositions are made in the context of the binary convention
problem.

Definition 6 A partial order � on the state space Q of a symmetrical agent
(commuting with g = (2 1)) is compatible with its transition functions δ0, δ1 :
Q→ Q if it has a least element s− and a greatest element s+ (i.e. s � s+ and
s− � s for all s), if for all s, s1, s2 ∈ Q

δ0(s) � s δ1(s) � s (4.14)

δ0(s) = s ⇒ s = s− δ1(s) = s ⇒ s = s+ (4.15)

s1 � s2 ⇒ δ0(s1) � δ0(s2) s1 � s2 ⇒ δ1(s1) � δ1(s2). (4.16)

and if

s1 � s2 ⇔ g(s1) � g(s2) (4.17)

. It can be easily shown that the condition (4.17) together with the left hand
sides of (4.14), (4.15) and (4.16), is in fact sufficient as a characterization, as
together they imply the right hand sides of (4.14), (4.15) and (4.16).

It obviously holds that

δ0(s
−) = s− δ1(s

+) = s+ (4.18)

as we have δ0(s
−) � s− by (4.14) and s− � δ0(s

−) from the definition of s−

so that δ0(s
−) = s− from the antisymmetry of �. The case for δ1 and s+ is

completely analogous. Not surprisingly there also necessarily holds that

g(s−) = s+ (4.19)

as δ1(g(s
−)) = g(δ0(s

−)) = g(s−) so that that stated follows by (4.15).
Once a convention is reached, all the agents will be either in s− or s+. These

states correspond to the leftmost and rightmost state from the previous discus-
sion. In the following we exclude the trivial case where #Q = 1. Consequently
s+ 6= s−.
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We can easily derive that for all s ∈ Q

∃k ∈ N δk0(s) = s− ∃k ∈ N δk1(s) = s+ (4.20)

Indeed we have s � δ0(s) � δ2
0(s) � δ3

0(s) . . . by (4.14) and because Q is finite
this sequence will at some point reach s− (and likewise for s+).

Given a partial order on Q we have the following

Definition 7 A set T ⊆ Q is decreasing if

a ∈ T ∧ a � b ⇒ b ∈ T

We now also need to specify a condition on the behavior function. Previously,
we informally stated that states on the left, or closer to s−, should have behavior
1 (= (1 0) which means always preferring alternative 0) and states on the right
behavior 0. At this point however we have the partial order at our disposal
to define the distances to s− and s+. It is then natural to require that the
set of states with behavior 1 is decreasing. Some agents inevitably have states
with behavior 1/2, due to symmetry constraints, e.g. agent 1a. At present the
mathematical framework we will develop in section 4.4 is not general enough to
deal with such states and we therefore do not allow them in our next definition.
This implies that not all three agents, for all of their respective parameters,
meet this definition. We will return to this point in section 4.1.4.

In the context of a symmetrical agent with state space Q, transition function
δ and behavior function f : Q → [0, 1] with a compatible partial order � we
now define the condition on the behavior function:

Definition 8 f is an extremal behavior function if for all s ∈ Q
i) ∀ s ∈ Q f(s) = 0 ∨ f(s) = 1

ii) S1 , {s ∈ Q | f(s) = 1} is decreasing

In particular, if f is extremal it immediately follows that

f(s−) = 1 f(s+) = 0 (4.21)

Indeed, g(s−) = s+ 6= s− so that by i) f(s−) = 0 or 1. If f(s−) = 0 then by the
symmetry of the agent we have f(s+) = 1. But then condition ii) is not fulfilled
as s+ � s−, so that necessary f(s−) = 1.

We now have the following

Theorem 9 Given a symmetrical agent with state space Q, transition function
δ, a compatible partial order � and an extremal behavior function f . Then φ is
C∞([0, 1]), 0, 1/2 and 1 are fixed points and we have either that
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a) φ(p) = p for 0 ≤ p ≤ 1, or

b) φ(p) < p for 0 < p < 1/2 and φ(p) > p for 1/2 < p < 1.

whereby b) holds if and only if

f(δ1(s
−)) = 1 (4.22)

This means that an agent which meets the conditions of this theorem and
for which (4.22) holds, has a response system with 1/2 an unstable equilibrium
and 0 and 1 stable equilibria.

We now investigate in which cases this characterization applies to the three
classes of agents introduced before.

4.1.3 Three classes of agents revisited

We will now show that for each of the agents defined in section 4.1.1, a compat-
ible partial order can be defined. We will also show that the set of states with
behavior 1, S1, is decreasing. In the absence of states with a behavior other
than 0 or 1, these are the preconditions for theorem 9 to apply. We will also
derive whether condition (4.22) of this theorem is fulfilled.

The linear agent

For this agent, with k ≥ 2, the partial order we define is also a total order:

qi � qj ⇔ i ≤ j. (4.23)

This order is compatible with δ: s− = q1, s
+ = qk and (4.14), (4.15) and (4.16)

hold, as can be easily verified.

The set S1 = {q1, . . . , q⌊k/2⌋} is decreasing. For even k theorem 9 applies.
Condition (4.22) is fulfilled iff1 k ≥ 4. The theorem thus also states that if
k = 2 then φ(p) = p, which is correct as the agent then becomes the imitating
agent.

The fact that for k = 3, (4.22) does not hold and at the same time the re-
sponse function is not the identity function, is not a counterexample to theorem
9, as the condition that f is extremal not fulfilled in this case.

1If and only if.
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The queue agent

For the definition of the partial order we need the following

Definition 10 The operator c transforms a vector x in its cumulative form c(x)
defined as:

cj(x) =

j∑

i=1

xi.

for j up to the length of x.

Then, for any s, t ∈ B = {0, 1}k we define

s � t ⇔ c(s) ≤ c(t). (4.24)

with for any x, y ∈ R, x ≤ y ⇔ xi ≤ yi ∀i.
This partial order is compatible with the definition of the agent. Clearly,

s− = (0, . . . , 0) and s+ = (1, . . . , 1). With regard to (4.17) we get, for s, t ∈ Q,

g(s) � g(t)⇔
j∑

i=1

g(si) ≥
j∑

i=1

g(tj) ∀j (4.25)

⇔
j∑

i=1

1− si ≥
j∑

i=1

1− tj ∀j (4.26)

⇔
j∑

i=1

si ≤
j∑

i=1

tj ∀j (4.27)

⇔ s � t (4.28)

For (4.14) we get

δ0(s) � s⇔ c(δ0(s)) ≤ c(s) (4.29)

⇔ c((s1 . . . sk))− c((0 s1 . . . sk−1)) ≥ 0 (4.30)

⇔ s ≥ 0 (4.31)

which is clearly true.
Concerning (4.16) we have

δ0(s) � δ0(t)⇔ c(δ0(s)) ≤ c(δ0(t)) (4.32)

⇔ c((0 t1 . . . tk−1))− c((0 s1 . . . sk−1)) ≥ 0 (4.33)

⇐ c(t)− c(s) ≥ 0 (4.34)

⇔ s � t (4.35)



4.1. BINARY CONVENTION PROBLEM 81

001 000010

011

100

101110111

k = 3

0001 00000010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

110111101111

k = 4

Figure 4.5: The directed graphs corresponding to the partial orders for the
queue agent in the case of k = 3 and k = 4.

Figure 4.5 visualizes the partial orders in the case of k = 3 and k = 4.

Now we show that S1 is decreasing. By the definition of the behavior function
we have that

f(s) = 1⇔ number of 0’s in s is greater than number of 1’s (4.36)

⇔
k∑

i=1

si < k/2 (4.37)

⇔ ck(s) < k/2 (4.38)

Now suppose s, t ∈ Q, f(s) = 1 and s � t. From s � t follows that ck(t) ≤ ck(s).
From f(s) = 1 follows that ck(s) < k/2, so that also ck(t) < k/2 which implies
f(t) = 1, so that t ∈ S1.

If k is even, all states have behavior 0 or 1 and theorem 9 applies. Condition
(4.22) holds if k ≥ 3.

The ∆-agent

We define the partial order on Q = [0, 1]2 as

(s1, s2) � (t1, t2)⇔ s1 ≥ s2 ∧ t1 ≤ t2 (4.39)

This partial order is compatible with the agent. We have s− = (1, 0) and
s+ = (0, 1). Obviously (4.17) holds, and with regard to (4.14), we derive that

δ0((s1, s2)) � (s1, s2)⇔ (s1 + ∆+)↓1 ∧ (s2 −∆−)↑0 ≤ s2 (4.40)
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which clearly holds. For (4.16), assume s � t, or s1 ≥ t1 and s2 ≤ t2. We have
that

s1 ≥ t1 ⇒ s1 + ∆+ ≥ t1 + ∆+ (4.41)

⇒ (s1 + ∆+)↓1 ≥ (t1 + ∆+)↓1 (4.42)

and similar for s2 ≤ t2, so that δ0(s) � δ0(t).
Concerning the behavior function, we have that s ∈ S1 ⇔ s1 > s2. If s ∈ S1

and s � t then t1 ≥ s1 > s2 ≥ t2 so that also t ∈ S1. S1 is thus decreasing.
Whether in the effective state space Q there are symmetrical states of the

form (x, x) or not, depends on the precise values of ∆+ and ∆−. If they exist,
they necessarily have behavior 1/2 and theorem 9 does not apply here. In
the examples given for the ∆-agent in section 4.1.1 such symmetrical states
were present. For ∆+ = ∆− = 0.15, for example, they do not occur. These
idiosyncrasies suggest that it would be more elegant to extend theorem 9 to deal
with such cases than to prohibit an agent to have these symmetrical states.

For condition (4.22) we have δ1(s
−) = δ1((1, 0)) = (1−∆−,∆+). So

f(δ1(s
−)) =






1 if ∆− + ∆+ < 1

1/2 if ∆− + ∆+ = 1

0 if ∆− + ∆+ > 1

(4.43)

and the condition is fulfilled if ∆− + ∆+ < 1.

4.1.4 Remarks

The following discussion deals partly with the mathematical framework devel-
oped in section 4.4. It is therefore best understood after reading that section.

Extension to symmetrical states

The theorem 9 relied on the behavior function to be extremal, which precludes
states with behavior 1/2. A more elegant characterization and a possible subject
for future research is to relax this condition on the behavior function such that
some states are allowed to have behavior 1/2. We give a tentative redefinition
of an extremal behavior function which we believe might be sufficient:

f(s) =






1 s � g(s)

0 s � g(s)

1/2 s and g(s) are unordered

(4.44)
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S1 , {s ∈ Q | f(s) = 1} is then automatically decreasing.
The way in which the proof for theorem 9 could be altered is the following.

In the original proof, the response of an agent coincided with the probability
to be in S1, which is a decreasing subset of Q. Hence there existed an index
i∗ for which φ(p) = π(S1) = yi∗ . With the new definition, this does not hold
anymore. However, if we define S1/2 = {s ∈ Q | f(s) = 1/2}, then we have
φ(p) = π(S1)+

1
2
S1/2. Moreover, it can be easily shown that not only S1, but also

S1∪S1/2 is decreasing, so that there exists an index i∗∗ with π(S1∪S1/2) = yi∗∗ .
From this follows that φ(p) = 1

2
(yi∗ + yi∗∗). So if it is possible to define a x0

for which 1
2
(yi∗ + yi∗∗) = p and moreover y0 ≤ y1 (or y0 ≥ y1), then the proof

would be completely analogous to the one given in section 4.4.

Monotonicity

The technique we used for proving theorem 9 also allows to show that the
deterministic system is monotone in a sense we clarify further on. This allows
us to draw much stronger conclusions with regard to the possible trajectories
the system may describe. In particular, it implies that the deterministic system
almost everywhere converges to states corresponding to the stable equilibria of
the response system and in that way excluding stable limit cycles or chaotic
behavior. We will sketch the reasoning, omitting technical details. We make
use of a result obtained in Angeli and Sontag (2004) (theorem 3, comments or
omitted parts in between brackets):

Consider a monotone, single-input, single-output [. . . ] system, en-
dowed with a non-degenerate I/S and I/O static characteristic [kX

and kY ]:

ẋ = f(x, u)

y = h(x).
(4.45)

Consider the unitary positive feedback interconnection u = y. Then
the equilibria are in 1−1-correspondence with the fixed points of the
I/O characteristic. Moreover, if kY has non-degenerate fixed points,
the closed loop system is strongly monotone, and all trajectories are
bounded, then for almost all initial conditions, solutions converge
to the set of equilibria of (4.45) corresponding to inputs for which
kY ′

< 1.

In their definition, the system (4.45) admits an input to state (I/S) charac-
teristic if, for each constant input, u, it has a unique globally asymptotically
stable equilibrium kX (u). The input/output (I/O) characteristic kY is then
h ◦ kX .
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If we identify the system (4.45) with

ẋT = xT (P p − I)

p = f(x).
(4.46)

whereby f is now the behavior function and the behavior p interpreted as input
and output, then the I/S characteristic is well-defined and equals the stationary
distribution under behavior p: πp. Consequently the I/O characteristic sim-
ply becomes the response function φ and the theorem states that almost all
trajectories will converge to the stable equilibria of the response system.

We have however not yet shown that the system is monotone as defined in
Angeli and Sontag (2004). Therefore it must be possible to define a partial
order � on the state space of the system, Σm, for which a first condition is that

p(1) ≥ p(2) and x(1)(0) � x(2)(0) (4.47)

⇒ x(1)(t) � x(2)(t) ∀t ≥ 0 (4.48)

whereby x(1)(t) is the solution to (4.46) under fixed input (behavior) p(1) and
similar for x(2)(t) with input p(2). At this point the change of coordinates from
x to y with yT = xTA becomes crucial. We define

x(1) � x(2) ⇔ x(1)TA ≥ x(2)TA. (4.49)

With this partial order, (4.48) holds from the following observation. With the
same definitions as in (4.4), analogous to the equations derived in (4.66), one
can relatively easy show that, with yT = xTA and the system (4.46) that also
holds

ẏi = pyi+ + (1− p)yi− − yi. (4.50)

As ∂ẏi/∂yj ≥ 0 for all i 6= j, (4.50) is in fact a cooperative system, as defined
in Smith (1995). As moreover ∂ẏi/∂p ≥ 0, because yi+ ≥ yi− , (4.48) follows.

The second condition for (4.46) to be monotone concerns the output (be-
havior) function:

x(1) � x(2) ⇒ f(x(1)) ≥ f(x(2)). (4.51)

In case of an extremal behavior function, f(x) = yi∗ so that (4.51) immediately
holds. But in fact the definition of f as any positive, linear combination of
yi’s would fulfill (4.51). An example is the extended definition of an extremal
behavior function given in section 4.1.4: f(x) = 1

2
(yi∗ +yi∗∗). This does however

not imply that any such definition of a behavior function results in an agent
solving CP1. It only means that the mentioned theorem from Angeli and Son-
tag (2004) is applicable, showing convergence to the equilibria of the response
system. Where these equilibria lie and how many there are, the theorem does
not deal with. This is precisely the information our theorem 9 provides.
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4.2 Multiple convention problem

We now introduce a class of agents solving CP2. The discussion occurs in the
context of the multiple convention problem with Z = {1 . . . n}, behavior space
B = Σn and for symmetrical agents. Our main result is the proof (in section
4.5) that the response function of a sampling agent with an amplifying behavior
function is also amplifying, under rather weak conditions. This implies that the
response system (as defined in (3.46)) will converge to one of the unit vectors,
i.e. a state of agreement. This result has been described in De Vylder and Tuyls
(2006), albeit in the context of the naming game.2

We will often refer to the queue-agent as introduced before, except that we
will redefine its behavior function. We therefore refer to this agent with its
behavior function left unspecified as the *queue-agent.

4.2.1 Sampling agents

In the following we use the notation < Q, δ, f > to denote an agent with state
space Q, transition function δ and behavior function f . Let Xτ ∈ Q be the
stochastic variable described by the Markov chain which the behavior τ ∈ Σn

induces.

Definition 11 An agent < Q, δ, f > is sampling if there exists a map µ :
Q→ Σn for which holds

E[µ(Xτ )] = τ ∀τ ∈ Σn (4.52)

or equivalently ∑

q∈Q
πτ (q)µ(q) = τ ∀τ ∈ Σn, (4.53)

and for which the agent’s behavior in state q, f(q), is only a function of µ(q).

For a sampling agent, we add the map µ to its describing tuple. As Q is
finite, the set E , µ(Q) ⊂ Σ is also finite. We will further on refer to E as the
sampling set. For any σ ∈ E we use the shorthand πτ (σ) ,

∑
{q∈µ−1(σ)} πτ (q).

With µ−1(σ) = {q ∈ Q|µ(q) = σ}. We simply write f(σ) , f(q) for σ ∈ E and
µ(q) = σ. Let Yτ = µ(Xτ ), the corresponding stochastic variable on E. Then
(4.52) becomes E[Yτ ] = τ . The agents response function can then be written as

φ(τ) =
∑

σ∈E
πτ (σ)f(σ) (4.54)

2See also Chapter 6.
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Figure 4.6: The set E = µ(Q), in the case of three alternatives, n = 3, and
queue of length 6 (k=6). Because n = 3 E is a subset of Σ3. For
clarity, the numbers indicate the actual number of occurrences
of each alternative, in order to obtain the actual frequencies
these vectors have to be divided by 6.

An example of a sampling agent is the queue-agent introduced before. The
function µ then is

µ(s) =
1

k
(d1(s), d2(s), . . . , dn(s)). (4.55)

Indeed, we have that

πτ (
1

k
(d1(s), d2(s), . . . , dn(s))) =

k!∏n
i=1 di(s)!

n∏

i=1

τ
di(s)
i , (4.56)

which corresponds to the multinomial distribution for which is known that
E[Yτ ] = τ .

In the case of a queue of length six, k = 6, and three alternatives, n = 3,
the set E is depicted in figure 4.6. For example given τ = (0.3, 0.2, 0.5), the
probability of observing the frequencies3 σ = 1

6
(5, 0, 1) (Pr[Yτ = σ] = πτ (σ)),

amounts to 6 0.35 0.5 = 0.00729.

4.2.2 Sampling-amplifying agents

The behavior of a sampling agent in state q, f(q), only depends on µ(q), so
that we can interpret its behavior function as a function f : Σn → Σn. We will

3We use the term ‘frequencies’ to mean relative frequencies.



4.2. MULTIPLE CONVENTION PROBLEM 87

sometimes refer to the components of σ ∈ Σ as frequencies. We will first of all
(informally) define a couple of properties such a function might possess. For the
formal definitions we refer to section 4.5. A function v : Σ→ Σ is

– symmetrical if a permutation of the input frequencies results in the same
permutation of the output frequencies,

– order preserving if it preserves the order of the frequencies

– weakly amplifying if symmetrical, order preserving and it increases the
highest frequency,

– amplifying if symmetrical, order preserving and the cumulative sum of the
frequencies—sorted in decreasing order— increases from input to output.

As we only consider symmetrical agents, a behavior function is always sym-
metric, i.e. commutes with any g ∈ Sn. Also, all behavior functions we will
consider are order preserving. However, we will introduce both amplifying and
non-amplifying behavior functions. Further we have that an amplifying function
is necessarily weakly amplifying, but the reverse is not generally true. Finally, it
is easy to see that the system on Σn induced by a (weakly) amplifying function
v:

σ̇ = v(σ)− σ (4.57)

will always converge to one of the unit vectors, except for a zero-measure, un-
stable subspace (see proposition 25 in section 4.5). This is a crucial property
used further on.

An example of an amplifying function is fA defined by

[fA(σ)]i =
σαi∑n
j=1 σ

α
j

(4.58)

for all σ ∈ Σ and with α ∈ R and α > 1. This is proven in section 4.5.3.
To illustrate, we consider the case of four alternatives, which for clarity we

name A = 1, B = 2, C=3 and D= 4, so Z = {A,B,C,D}, and a queue-agent
with a queue of length k = 12. Hence Q = Z12 Suppose q ∈ Q contains 1, 4,
5 and 2 A’s,B’s,C’s and D’s, respectively. Then the alternatives occur with the
frequencies σ = µ(q):

A B C D
σ 0.083 0.333 0.417 0.167

We now apply the amplifying map (4.58) with α = 2: each frequency is squared
and the result is normalized such that its sum equals 1 again.
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A B C D
σ 0.083 0.333 0.417 0.167
σ2 0.007 0.111 0.174 0.027

[fA(σ)] 0.022 0.348 0.543 0.087

Note that the frequency of C, which occurred most often, increases, but that
the frequencies of the other alternatives can increase as well as decrease, e.g.
B increased and A and D decreased. This transformation of the frequencies is
symmetrical, order preserving (in both input and output we have the following
order: C > B > D > A) and amplifying:

C B D A
σ sorted 0.417 0.333 0.167 0.083

fA(σ) sorted 0.543 0.348 0.087 0.022
σ sorted cumulative 0.417 0.750 0.917 1

fA(σ) sorted cumulative 0.543 0.891 0.978 1

As already mentioned, if the behavior function f of a sampling agent is
amplifying this property propagates to the response function which will then
also be amplifying (under some extra conditions on E and π). Also, we stated
that the system on Σ corresponding to a (weakly) amplifying function as defined
(4.57) always converges to a unit vector. As the response system (3.46) has the
form (4.57) and if moreover φ is amplifying, then the response function will
always converge to a state of agreement. This means that such an agent solves
CP2. The conditions on E and π are stated in section 4.5. In the particular case
of the queue-agent these conditions translate to the requirement that k ≥ 3, i.e.
the queue should have a length of at least three (see section 4.5.4). We already
encountered this condition for the queue-agent in the context of the binary
convention problem.

Now one may wonder whether—apart from being sufficient—it is also neces-
sary that a sampling agent’s behavior function is amplifying for the correspond-
ing response system to converge to a unit vector.

On the one hand, the answer to this question is negative in general. Consider
a *queue-agent with a very large queue. The set E ⊂ Σn will then contain a very
large number of elements. Suppose now that the behavior function f of the agent
is amplifying for almost all σ ∈ E, with only very few exceptions. While these
exceptions make f non-amplifying, their influence on φ(τ) =

∑
σ∈E πτ (σ)f(σ)

will be negligible. As the performance of the agent in CP2 depends only on φ,
it will not change.

On the other hand, we show by a counterexample that weakly amplification
of f does not guarantee the weakly amplification of φ, the latter being sufficient
to have convergence. For this we define the function fW which increases the
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highest frequency and makes all other frequencies equal.4 More precisely, let σ+

be the maximal element in σ ∈ Σ and κ(σ) be the number of times σ+ occurs
in σ. Further let d(σ) be the sum of the elements of σ which are not maximal
and β ∈ ]0, 1[ a constant, then we have

[fW(σ)]i =

{
σ+ + βd(σ)

κ(σ)
if σi = σ+

(1−β)d(σ)
n−κ(σ)

otherwise
(4.59)

This function is not amplifying because we have for example, with β = 0.1,
fW((0.6, 0.4, 0)) = (0.64, 0.18, 0.18) whereby 0.64 + 0.18 < 0.6 + 0.4. While
fW is weakly amplifying it is shown in section 4.2.3 that the resulting response
function, φW, does not inherit this property.

Finally we will also investigate the identity behavior function fI:

fI(σ) = σ (4.60)

which corresponds to fA with α = 1. For this function we can derive

φI(τ) =
∑

σ∈E
πτ (σ)fI(σ) =

∑

σ∈E
πτ (σ)σ = τ, (4.61)

using (4.53). The response function hence also becomes the identity function.

4.2.3 Discussion

In the previous section we stated that a sampling agent with amplifying behavior
function, under some restrictions on the sampling set E and π, has a response
system which converges to one of the extremal points of the simplex Σn, i.e. a
state in which only one alternative remains.

We will now illustrate this property, as well as compare the response sys-
tem dynamics with the dynamics of the original stochastic multi-agent system.
Therefore we show the evolution of the frequencies with which the different
alternatives occur for both systems.5 This comparison is conducted in three
settings, which differ in the agents’ behavior function. In both the response and
stochastic system we use *queue-agents with k = 3. In the stochastic system,
the population consists of N = 200 agents. The three types of response func-
tions used are fA, fI and fW as defined in (4.58), (4.60) and (4.59) respectively.
To make a visualization of the corresponding space Σn possible, the number

4Strictly speaking, such a function is not order preserving according to the definition given
in section 4.5, because frequencies which are different can become equal. But this is non-
essential.

5The intermediate deterministic system is not considered.
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of alternatives n was restricted to three. In the stochastic system, the agents’
queues were initially filled with random alternatives. The results are shown in
Figure 4.7.

The first response function used was fA with α = 2. In Figure 4.7(a),
trajectories of the response system σ̇ = φA(σ) − σ are shown starting from
different initial states near the central point τc = (1

3
, 1

3
, 1

3
). In Figure 4.7(b)

the evolution of the population behavior the stochastic system is shown, for 50
runs. The population behavior was plotted every kN games. The parameters
are such that the conditions for amplification of φA are fulfilled: fA is amplifying
as α > 1 and the π is consistent because k ≥ 3. Indeed, in Figure 4.7(a) one
can clearly observe the convergence towards one of the corners of the simplex
(arrows were omitted for clarity). Figure 4.7(b) suggests that the stochastic
system shows the same tendency to converge toward one of the stable fixed
points of the dynamic.

The second behavior function investigated was fI, defined as fI(σ) = σ,
which in its turn implied φI(τ) = τ . Such an agent, when having role I in
an interaction, randomly selects an alternative from its queue. Figures 4.7(c)
and 4.7(d) show a comparison between the response system and the stochastic
system in this case. In Figure 4.7(c), the absence of a dynamic is illustrated
by the dots: in fact every point on the simplex is a neutral equilibrium. With
regard to the stochastic system in Figure 4.7(d), this neutrality apparently
translates into a random walk on the simplex, which is shown by just one run
in order not to clutter the image. This is a similar result as for agent 1b in the
context of CP1. The population behavior will eventually end up in a corner of
the simplex, as alternatives will accidentally get lost from time to time until
only one remains.6 In other words, the absorbing state argument applies again.
However, similar to agent 1b, what the neutral dynamic in Figure 4.7(c) does
suggest, is that the time needed to reach a consensus will be relatively large.
This is verified further on.

The last behavior function we consider is fW, with β = 0.1. Figures 4.7(e)
and 4.7(f) show a comparison between the response system and the stochastic
system in this case. In Figure 4.7(e) one can see that despite fW being weakly
amplifying, φW is not (which would imply all trajectories to converge to one
of the corners). On the contrary, the central point τc is a stable fixed point
and has a large basin of attraction. In the stochastic system this translates
into trajectories that randomly wander around the central point as is shown
in 4.7(f). Also in this case, the absorbing state argument applies for the same
reason as before. Similar to agent 1c, however, we expect that the time to reach

6Geometrically, on Σ3, losing an alternative means hitting an edge (from three to two) or
a corner (from two to one) of the simplex.
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Behavior function Response system Stochastic system

fA

(a) (b)

fI

(c) (d)

fW

(e) (f)

Figure 4.7: Comparison of the response system with the stochastic system
for three different behavior functions: fA, fI and fW. In all
cases we use queue-agents with k = 3, three alternatives and the
plots show the evolution over Σ3 of the alternative frequencies.
In (b),(d) and (f) the population consists of N = 200 agents,
and points are drawn every kN = 600 games.
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20 40 60 80 100 120 140
Population size

100000

200000

300000

400000

Time to convergence
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Figure 4.8: The average number of interactions needed to reach convergence
as a function of the population size in the stochastic system. In
the three graphs we have a population of *queue-agents with
k = 3 with different types of behavior functions: fA, fI and
fW. The plots show an average over 100 runs and the error
bars show a 95% confidence interval.

such a state will be larger than in the case of fI and much larger than in the
case of fA.

We verified the expected difference in convergence time between the behavior
functions fA, fI and fW in the stochastic system. In Figure 4.8, the average
number of interactions needed to reach a convention is shown as a function
of the population size for the three cases. There is clearly a large difference in
time to convergence between the three cases, with an increasing population size.
The most important difference (in relative terms) exists between the amplifying
behavior function fA and the non-amplifying functions fI and fW. Amplification
hence dramatically increases the speed of convergence. Still, a considerable
difference exists between fI and fW, which is explained by their associated
response functions. While φI allows a pure random walk on Σ3, φW superposes
an attracting force towards τc which increases the time to escape from the central
area of Σ3.
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agents solving CP1

P1 P2

agent 1d[4]
queue-agent

*queue-agent

Figure 4.9: Relation between the agent classes defined by P1 and P2 in CP1.
Agent 1d[4] is agent 1d with k = 4.

4.3 Comparison

In the previous two sections we defined both for CP1 and CP2 a property that
is sufficient for an agent to solve the respective convention problem. Let us
name these properties P1 and P2, respectively. P1 states that there exists a
partial order on the agent’s state space, compatible with its transition function
and that the agent has an extremal behavior function. P2 states that one can
interpret an agent as if it samples the other agents in the population and that
its behavior function amplifies the observed frequencies.

As CP1 is a special case of CP2, the characterization P2 is automatically
also sufficient for CP1. The characterization P1 however also covers agents
not covered by P2. Yet, neither of these properties is more general than the
other in the context of CP1. Figure 4.9 schematizes the relation between these
characterizations for the binary convention problem. The label *queue-agent
stands for a queue-agent, with a behavior function different than that of the
queue-agent, but which is still amplifying, e.g. fA as defined in (4.58).

Agent 1d[4] is not in P2 for a similar reason as agent 1a is not. We only
explain the latter for simplicity. If agent 1a were in P2, there should exist a
µ : Q→ [0, 1] for which holds

p = πp(q1)µ(q1) + πp(q2)µ(q2) + πp(q3)µ(q3) for all p ∈ [0, 1]. (4.62)

From p = 0 we get µ(q1) = 1 and from p = 1 µ(q3) = 0. By symmetry we also
must have µ(q2) = 1/2. But then there are no degrees of freedom left and the

right hand side of (4.62) equals φ(p) = p(1+p)
2(1−p+p2)

6= p, which violates (4.53).

We now turn our attention to an agent in CP2 with n = 3, Z = {A, B, C}:7

7This agent is derived from the model introduced in Baronchelli et al. (2006).
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Agent 2c The agent has 7 states and a transition diagram

A

ABC

AB AC

CBCB

b

b

b

b
b

b

a

a

a

a
a

a

c c

c

c

c

c

b

a

c

In a state labeled with one alternative, the agent prefers that alternative.
In states with more alternatives, the agent chooses randomly between
them.

While this is a very simple agent which solves CP2, it is not covered by the
sampling-amplification model we proposed. Because the agent bears some re-
semblances to agent 1a, one could wonder whether it is not possible to extend
our results for the binary convention problem to the multiple convention prob-
lem, in that way covering this—and probably many more—agents. While we
believe this is possible, we do not have results on this at the moment of writing.
For n = 2 we defined a structure on the state space by means of a partial order.
It is however not clear how to translate this concept in the case of more than
two alternatives.

4.4 Mathematical background for 4.1

The following argumentation occurs in the context of a symmetrical agent with
state space Q, transition function δ, behavior function f : Q → [0, 1], with a
compatible partial order � and with the g = (2 1) the permutation with which
the agent commutes and the notation for s ∈ Q, g(s) ∈ Q the symmetrical state
of s.

We now consider the finite Markov chain M induced by a behavior p with
0 ≤ p ≤ 1. The elements of Q are the states of the chain and a transition from
a state s to δ0(s) occurs with probability p and from s to δ1(s) with probability
1− p.
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Proposition 12 For every 0 ≤ p ≤ 1, M is aperiodic and has a unique sta-
tionary distribution πp (with πp(s) the probability to be in state s).

Proof. Because δ0(s
−) = s−, s− has period 1 and M is aperiodic. A Markov

chain has a unique stationary distribution if it has exactly one irreducible subset
(property 55 in Appendix B). We also know that a finite Markov chain has at
least one irreducible subset (property 45 in Appendix B). Suppose p > 0, then
s− is reachable from any state by transitions δ0 with chance p by (4.20). Hence
any irreducible subset must contain s− and by mutual exclusiveness this implies
there can only be one such set. In case p = 0, s+ is reachable from any state by
transitions δ1 with chance 1 − p (in which case πp(s

+) = 1 and πp(s) = 0 for
s 6= s+ and likewise for p = 1).

Let s ∈ Q, T ⊆ Q and f any function from Q to Q. We then also write
f(T ) = {f(s) | s ∈ T}, f−1(s) = {t | f(t) = s} and f−1(T ) = {t | f(t) ∈ T} =⋃
t∈T f

−1(t).

Proposition 13 Let T ⊆ Q be decreasing. It holds that

1) δ−1
0 (T ) is decreasing 3) δ−1

1 (T ) is decreasing

2) δ−1
0 (T ) ⊇ T 4) δ−1

1 (T ) ⊆ T

Proof. 1) If a ∈ δ−1
0 (T ) then δ0(a) ∈ T . If a � b then δ0(a) � δ0(b) by (4.16).

Hence δ0(b) ∈ T as T is decreasing and b ∈ δ−1
0 (T ). 2) Suppose a ∈ T . As

a � δ0(a) and T is decreasing, δ0(a) ∈ T and a ∈ δ−1
0 (T ). 3) (analogous to 1).

4) If a ∈ δ−1
1 (T ) then δ1(a) ∈ T . We have δ1(a) � a by (4.16) such that a ∈ T

as T is decreasing.

From now on we suppose that the states Q are labeled 1, 2, . . . , n with
n = #Q. Let P be the row-stochastic transition matrix of M and x ∈ Σn

a probability distribution over the states in Q. We now introduce a new coordi-
nate system. Therefore we associate a dimension with every decreasing subset
of Q. As Q is finite, the number of decreasing subsets of Q, say m, is also finite.
Let us denote these sets by Ti, 1 ≤ i ≤ m. With each such set corresponds a
variable yi =

∑
j∈Ti

xj. Hence we have the linear transformation between the
vectors y and x:

yT = xTA (4.63)

with A an n×m-matrix and

Aji =

{
1 if j ∈ Ti
0 otherwise

(4.64)
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For any i ∈ [1,m] let us define i+ and i− by Ti+ = δ−1
0 (Ti) and Ti− = δ−1

1 (Ti).
This definition of i+ and i− makes sense by proposition 13 1) and 3). Moreover
we then have

Ti− ⊆ Ti ⊆ Ti+ (4.65)

by proposition 13 2) and 4).

Proposition 14 Let x(0) ∈ Σ be a probability distribution over the states Q
and x(k+1)T = x(k)TP. Let y(k)T = x(k)TA ∀k ≥ 0. Then the following recursive
relation holds

y
(k+1)
i = py

(k)

i+ + (1− p)y(k)

i− . (4.66)

Proof.

y
(k+1)
i =

∑

j∈Ti

x
(k+1)
j (4.67)

=
∑

j∈Ti

n∑

l=1

x
(k)
l Plj (4.68)

=
∑

j∈Ti



p
∑

l∈δ−1
0 (j)

x
(k)
l + (1− p)

∑

l∈δ−1
1 (j)

x
(k)
l



 (4.69)

= p
∑

j∈Ti

∑

l∈δ−1
0 (j)

x
(k)
l + (1− p)

∑

j∈Ti

∑

l∈δ−1
1 (j)

x
(k)
l (4.70)

= p
∑

l∈δ−1
0 (Ti)

x
(k)
l + (1− p)

∑

l∈δ−1
1 (Ti)

x
(k)
l (4.71)

= py
(k)

i+ + (1− p)y(k)

i− (4.72)

In (4.69) we switched from a forward calculation of y
(k+1)
i , to a backward one,

directly counting the (wheighted) arrows that arrive in a state xl. In (4.71) we
used the fact that all δ−1

0 (j)’s are disjunct, as well as all δ−1
1 (j)’s.

As M has a unique stationary distribution and is aperiodic it is known that
limk→∞ Pk = 1πT

p (Perron-Frobenius). Consequently we also have limk→∞ x(k) =

πp and limk→∞ y(k)T = πT
pA, as y(k)T = x(k)TA. Moreover, proposition 14 sug-

gests that we can obtain this sequence of y(k) directly, without referring to x(k)

and what is more, this recursive relation is monotone in the sense that

y(k) ≥ ŷ(k) ⇒ y(k+1) ≥ ŷ(k+1), (4.73)

where y ≥ ŷ ⇔ yi ≥ ŷi ∀i. This is an immediate consequence of the fact that
the coefficients p and (1− p) in (4.66) are nonnegative.
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Equation (4.73) also implies that

y(0) ≤ y(1) ⇒ y(0) ≤ y(1) ≤ y(2) ≤ . . . ≤ πpA (4.74)

y(0) ≥ y(1) ⇒ y(0) ≥ y(1) ≥ y(2) ≥ . . . ≥ πpA (4.75)

This property will be exploited in the following theorem.

Theorem 15 Let Q∗ ⊆ Q be decreasing. Define ψ : [0, 1] → [0, 1] as ψ(p) =
πp(Q

∗).8

If ψ(p∗) = p∗ for some p∗ with 0 < p∗ < 1 then ψ(p) ≤ p for p < p∗ and
ψ(p) ≥ p for p > p∗.

Proof. Because Q∗ is decreasing there exists an index i∗ such that Q∗ = Ti∗ .
We then have

ψ(p) = (πpA)i∗ (4.76)

As usual we define x(k+1) = x(k)P and y(k) = x(k)A. For any x(0) ∈ Σ we then
have

ψ(p) = lim
k→∞

y
(k)
i∗ . (4.77)

If we can define x(0) so that y
(0)
i∗ = p and y(0) ≤ y(1) ( ≥), for p− p∗ > 0 (< 0),

then the stated is proven. Indeed, using (4.74) (or (4.75)) we then get

ψ(p) = (πpA)i∗ = y
(∞)
i∗ ≥ y

(0)
i∗ = p. (4.78)

We therefore define x(0) as follows

x
(0)
j =

{
απp∗(j) if j ∈ Q∗

βπp∗(j) otherwise.
(4.79)

where α = p
p∗

so that y
(0)
i∗ = p using y

(0)
i∗ = απp∗(Q

∗) and πp∗(Q
∗) = ψ(p∗) = p∗.

β is chosen in order to satisfy
∑n

j=1 x
(0)
j = 1. We get

n∑

j=1

x
(0)
j = απp∗(Q

∗) + β(1− πp∗(Q∗)) (4.80)

= αp∗ + β(1− p∗) (4.81)

= p+ β(1− p∗) (4.82)

resulting in β = 1−p
1−p∗ .

8For any T ⊆ Q, πp(T ) has the obvious interpretation πp(T ) =
∑

s∈T πp(s).
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We now calculate

y
(1)
i − y(0)

i = py
(0)

i+ + (1− p)y(0)

i− − y
(0)
i (4.83)

using (4.66) or also

y
(1)
i − y(0)

i = p



α
∑

j∈Ti+∩Q∗

x
(0)
j + β

∑

j∈Ti+\Q∗

x
(0)
j





+(1− p)



α
∑

j∈Ti−∩Q∗

x
(0)
j + β

∑

j∈Ti−\Q∗

x
(0)
j





−



α
∑

j∈Ti∩Q∗

x
(0)
j + β

∑

j∈Ti\Q∗

x
(0)
j





(4.84)

Using the auxiliary definitions

c1 = πp∗((Ti+ \ Ti) ∩Q∗) c3 = πp∗((Ti+ \ Ti) \Q∗)

c2 = πp∗((Ti \ Ti−) ∩Q∗) c4 = πp∗((Ti \ Ti−) \Q∗)

and (4.65): Ti− ⊆ Ti ⊆ Ti+ , (4.84) can be written as

y
(1)
i − y(0)

i = pαc1 + pβc3 − (1− p)αc2 − (1− p)βc4. (4.85)

Substituting α = p
p∗

and β = 1−p
1−p∗ in (4.85) we get

y
(1)
i − y(0)

i =
p2(1− p∗)c1 − (1− p)2p∗c4 + p(1− p)(p∗c3 − (1− p∗)c2)

p∗(1− p∗) . (4.86)

Now, as πp∗ is a stationary distribution, there holds (e.g. by (4.66))

πp∗(Ti) = p∗πp∗(Ti+) + (1− p∗)πp∗(Ti−) (4.87)

which yields, by a straightforward calculation

p∗c3 − (1− p∗)c2 = (1− p∗)c4 − p∗c1. (4.88)

The left hand side of (4.88) can be substituted in (4.86), simultaneously elimi-
nating c2 and c3. Finally, (4.86) then becomes

y
(1)
i − y(0)

i =
(p− p∗)(pc1 + (1− p)c4)

p∗(1− p∗) . (4.89)
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Except for p− p∗, the factors in (4.89) are positive, and as the derivation holds
for any 1 ≤ i ≤ m, we have

p > p∗ ⇒ y(1) ≥ y(0) ⇒ ψ(p) ≥ p (4.90)

p < p∗ ⇒ y(1) ≤ y(0) ⇒ ψ(p) ≤ p (4.91)

Theorem 16 Under the same assumptions as in theorem 15, ψ is a rational,
C∞([0, 1]) function (continuously differentiable for all degrees of differentiation).

Proof. Let us denote the class of rational expressions in p as F (p). I.e. F (p) =

{a(p)
b(p)
| a(p) and b(p) are polynomials in p}. The stationary distribution πp is

the unique solution to the equation xT(P − I) = 0T under the restriction
x ∈ Σn. All elements of A , (P − I)T are in F (p). Now we eliminate variable
xn by xn = 1−∑n−1

i=1 xi, resulting in the equations, with A = {aij}:



a11−a1n a12−a1n ... a1(n−1)−a1n

a21−a2n a22−a2n ... a2(n−1)−a2n

...
...

...
...

a(n−1)1−a(n−1)n a(n−1)2−a(n−1)n ... a(n−1)n−a(n−1)n








x1
...

xn−1



 =




−a1n

...
−a(n−1)n





(4.92)
All expressions in the left and right hand-side of (4.92) are in F (p). If this linear
system of equations is solved e.g. by Gaussian elimination and backsubstitution,
all occurring expressions will remain in F (p) as this set is closed under algebraic
operations. Hence all elements from πp are in F (p). Because ψ(p) = πp(Q

∗),

ψ(p) ∈ F (p) and there exist polynomials a(p) and b(p) with ψ(p) = a(p)
b(p)

.
From proposition 12 we know that πp exists and is unique for every p ∈

[0, 1]. Hence also ψ is defined in [0, 1] and 0 ≤ ψ(p) ≤ 1 for 0 ≤ p ≤ 1.
Suppose b(p∗) = 0 for some p∗ ∈ [0, 1]. Then necessarily a(p∗) = 0, otherwise
limp→p∗ ψ(p) = +/−∞. But if a(p∗) = 0 then we can cancel the common factor
(p − p∗) in a(p) and b(p). This means that ψ(p) can always be put in a form
a(p)
b(p)

with b(p) 6= 0 for p ∈ [0, 1]. Therefore ψ is C∞([0, 1]).

Corollary 17 Under the same assumptions as in theorem 15 and if moreover
Q∗ 6= Q and Q∗ 6= ∅, then ψ(0) = 0, ψ(1) = 1 and either

a) ψ(p) > p for 0 < p < 1,

b) ψ(p) < p for 0 < p < 1,

c) the equation ψ(p) = p has exactly one solution for 0 < p < 1,
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d) ψ(p) = p for 0 ≤ p ≤ 1.

Proof. Let s ∈ Q∗, as s � s− and Q∗ is decreasing we have s− ∈ Q∗. Also, let
s /∈ Q∗, as s � s+ we have s+ /∈ Q∗. From this immediately follows π1(Q

∗) = 1
and π0(Q

∗) = 0.
If neither a), b) nor c) holds, then ψ(p) = p must have two distinct solutions,

say p1 and p2, with 0 < p1 < p2 < 1. Then, by theorem 15 we can derive both
p ≤ ψ(p) and p ≥ ψ(p) or in other words ψ(p) = p for p1 ≤ p ≤ p2. Together
with ψ(p) ∈ F (p), by theorem 16, this implies that necessarily ψ(p) = p every-
where, so that d) is then necessarily true.

Proof of theorem 9. To begin with, as the agent is symmetrical, φ is
point-symmetrical around (0.5, 0.5), and 1/2 is necessarily a fixed point.

As f is extremal, f(s) is either 0 or 1 and Q can be partitioned into the
sets S1 and S0 with s ∈ Si ⇔ f(s) = i. Moreover S1 is decreasing. Therefore
theorem 15 applies, with Q∗ = S1 and φ(p) = f(πp) = πp(S1) = ψ(p). Theorem
16 automatically applies as well so that φ is C∞([0, 1]). Because ∅ ⊂ S1 ⊂ Q,
the preconditions of corollary 17 are also fulfilled and apart from 1/2, 0 and 1
are also fixed points of φ. Cases a) and b) of this corollary are impossible by
the mentioned symmetry of φ. Hence either c) or d) holds. If c) holds than the
unique fixed point must be 1/2.

Now it rests us to show that for corollary 17

c) holds ⇔ f(δ1(s
−)) = 1. (4.93)

• (⇒) By contrapositive. Assume that f(δ1(s
−)) = 0. We first show that

f(δ1(s)) = 0 ∀s ∈ Q. We have s− � s ∀s ∈ Q. By (4.16) then follows that
δ1(s

−) � δ1(s) ∀s. If f(δ1(s)) = 1, then as S1 is closed also δ1(s
−) = 1

which contradicts our assumption, so f(δ1(s)) = 0 ∀s ∈ Q.

By the symmetry of the agent then immediately follows that also f(δ0(s)) =
1 ∀s ∈ Q. In particular this means that all 1-arrows from S1 end up in
S0 and that all 0-arrows from S0 and up in S1. This implies that for the
stationary distribution πp over Q holds

pπp(S0) = (1− p)πp(S1). (4.94)

As πp(S0) + πp(S1) = 1, from (4.94) follows that φ(p) = πp(S1) = p.

• (⇐) Given f(δ1(s
−)) = 1, we show that the left hand side of (4.93) holds

by proving that φ′(1) = 0. This property, together with theorem 16,
excludes possibility d) of corollary 17.
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Let us consider again the Markov chain M over Q where 0-arrows are
taken with probability p and 1-arrows with probability 1 − p. In the
limit p → 1, or (1 − p) → 0, the event of having multiple 1-transitions
short after one another is of order (1− p)k with k ≥ 2 and may therefore
be neglected. The agent hence is mostly in s− with a sporadic (chance
1 − p) 1-transition to δ1(s

−), followed by 0-transitions through states
δ0(δ1(s

−)), δ2
0(δ1(s

−)), . . . which lead back to s−. All these visited states
are in S1 because f(δ1(s

−)) = 1, f is extremal and δ1(s
−) � δ0(δ1(s

−)) �
δ2
0(δ1(s

−)) . . .. So in the first-order approximation for p → 1, the only
states visited are in S1, hence they all have behavior 1, which implies that
φ′(1) = 0.

4.5 Mathematical background for 4.2

4.5.1 Preliminaries

The permutation that swaps two elements on position i and j is written as i↔j.

Definition 18 We name a function v : Σ → Σ symmetrical if the function
commutes with any permutation p ∈ P:

v(p(σ)) = p(v(σ)) ∀p ∈ P,∀σ ∈ Σ. (4.95)

In particular, for a symmetrical map v holds that

σi = σj ⇒ vi(σ) = vj(σ) (4.96)

as we have, given σi = σj,

vi(σ) = vi(i↔j(σ)) = [i↔j(v(σ))]i = vj(σ) (4.97)

Definition 19 The binary relation ⋗ on Σ is defined as x ⋗ y if yi is zero
whenever xi is zero, or formally

x⋗ y ⇔ ∀i (xi = 0⇒ yi = 0) . (4.98)

In addition we also define the relation ⊜ as

x ⊜ y ⇔ x⋗ y ∧ y ⋗ x

⇔ ∀i (xi = 0 ⇔ yi = 0) .
(4.99)
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Obviously ⋗ is transitive and

x⋗ y ⇒ p(x) ⋗ p(y) ∀p ∈ P (4.100)

Definition 20 An element σ ∈ Σ is decreasing iff σ1 ≥ σ2 ≥ . . . ≥ σn and is
strictly decreasing if the inequalities are strict.

The subset of Σ of decreasing elements is written as Σ′. We define n elements
of Σ′, u(i), 1 ≤ i ≤ n, as follows:

u
(i)
j =

{
1
i

for j ≤ i
0 elsewhere

(4.101)

and the set of these points U = {u(1), u(2), . . . , u(n)}. The set Σ∗ ⊂ Σ′ is defined
as Σ∗ = Σ′ \ U . An alternative characterization of Σ∗ is

σ ∈ Σ∗ ⇔
{
σ is decreasing and
∃m, m < n and σm > σm+1 > 0

(4.102)

Definition 21 A function v : Σ→ Σ is order preserving if

σi < σj ⇒ vi(σ) < vj(σ) ∀σ ∈ Σ ∀i, j (4.103)

or conversely, v is order preserving if

vi(σ) ≤ vj(σ) ⇒ σi ≤ σj (4.104)

From (4.96) and (4.104) follows that for a symmetrical, order preserving
map v

σi = σj ⇔ vi(σ) = vj(σ). (4.105)

We reuse the operator c from definition 10: ck(σ) =
∑k

i=1 σi. Clearly, for
any σ ∈ Σn, cn(σ) = 1.

Definition 22 A map v : Σ → Σ is amplifying if it is symmetrical, order
preserving and moreover

ck(v(σ)) ≥ ck(σ) ∀σ ∈ Σ′, ∀k (4.106)

with strict inequality if σ ∈ Σ∗, k < n and σk+1 > 0. The condition for σ
outside Σ′ follows from the symmetry of v.
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It can be easily shown that for such a map must hold

v(σ) = σ ∀σ ∈ U. (4.107)

Next, we define a partition of Σ′ in n subsets Bi, 1 ≤ i ≤ n, such that for
σ ∈ Σ′:

σ ∈ Bi ⇔ σ1 = σ2 = . . . = σi and (4.108)

σi > σi+1, if i < n. (4.109)

Proposition 23 The sets Bi are convex.

Proof. Let x, y ∈ Bi and z = θx + (1 − θ)y. z is decreasing, as x and y are.
Also z1 = . . . = zi and zi+1 = θxi+1 + (1− θ)yi+1 < θxi + (1− θ)yi = zi. Hence
z ∈ Bi

Proposition 24 If v : Σ → Σ is an order preserving map, then the sets Bi,
1 ≤ i ≤ n are invariant under v.

Proof. The equalities and inequality in (4.108) and (4.109) are preserved be-
cause of (4.103) and (4.105).

Proposition 25 Let v : Σ → Σ be an amplifying map. If we consider the
differential equation for σ(t) ∈ Σ:

σ̇ = v(σ)− σ, with σ(0) ∈ Bi (4.110)

then
lim
t→∞

σ(t) = u(i).

However, only u(1) is an asymptotically stable fixed point.

Proof. From propositions 24 and 23 we have σ(t) ∈ Bi for all t ≥ 0. By
definition also u(i) ∈ Bi. From (4.107) follows that u(i) is an equilibrium of
(4.110) and from (4.106) we know there can be no other equilibria in Bi. We
now define the following function V : Bi → R≥0

V (σ) =
1

i
− σ1.

We have

1) V (u(i)) = 0, because V (u(i)) = 1
i
− u(i)

1 = 0.
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2) V (σ) > 0 for all σ ∈ Bi \ {u(i)}. Because
∑i

k=1 σk = 1 would imply that

σ = u(i), we deduce that
∑i

k=1 σk < 1. Further, as
∑i

k=1 σk = iσ1 we
obtain σ1 <

1
i
.

3) V̇ < 0 in σ ∈ Bi \ {u(i)}. We have

V̇ =
dV

dσ

dσ

dt
(4.111)

= (−1, 0, . . . , 0)T(v(σ)− σ) (4.112)

= −v1(σ) + σ1 < 0 (4.113)

because v is amplifying and the conditions for strict inequality in (4.106):
σ ∈ Σ∗ and σ2 > 0 are met (σ2 = 0 would imply σ = u(1)).

Hence, V is a Lyapunov function on Bi and therefore the equilibrium u(i) has
basin of attraction Bi. However, as an arbitrary small neighborhood of u(i),
i ≥ 2 contains elements outside of Bi, e.g.

(
1

i
+ ǫ,

1

i
− ǫ

i− 1
, . . . ,

1

i
− ǫ

i− 1
, 0, . . . , 0) ∈ B1, for ǫ > 0, (4.114)

these u(i) are unstable fixed points. Therefore only u(1) is asymptotically stable.

Proposition 26 With < Q, δ, f > a sampling agent,

πτ (σ) > 0 ⇒ τ ⋗ σ (4.115)

for all τ ∈ Σ and σ ∈ E.

Proof (by contrapositive). Let τi = 0 and σi > 0. We have

τi =
∑

x∈E
πτ (x)xi =

∑

x∈E\{σ}
πτ (x)xi + πτ (σ)σi = 0 (4.116)

which can only be true if πτ (σ) = 0.

Definition 27 A sampling agent < Q, δ, f, µ > is supportive if also the con-
verse of proposition 26 is true.

τ ⋗ σ ⇒ πτ (σ) > 0 (4.117)

for all τ ∈ Σ and σ ∈ E.
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Proposition 28 Given a sampling agent < Q, δ, f, µ >, τ ∈ Σ and p ∈ P with
τ ⊜ p(τ), then for all σ ∈ E

πτ (σ) > 0 ⇒ πτ (p(σ)) > 0 (4.118)

Proof. From τ ⊜ p(τ) follows p−1(τ) ⊜ p−1(p(τ)) and thus τ ⊜ p−1(τ) (using
(4.100)). If we assume πτ (σ) > 0 then proposition 26 implies τ ⋗ σ. As a
result p−1(τ) ⋗ σ (using transitivity) and hence τ ⋗ p(σ). Finally, this implies
πτ (p(σ)) > 0 as the agent is supportive.

We will use the following notations: E ′ = E ∩ Σ′ and E∗ = E ∩ Σ∗, with
E = µ(Q) as defined before.

Definition 29 A sampling agent < Q, δ, f, µ > is covering if

∀τ ∈ Σ∗ ∃σ ∈ E∗ (πτ (σ) > 0) (4.119)

The requirements for τ outside Σ∗ follow from the symmetry of π.

Proposition 30 Let < Q, δ, f, µ > be a supportive, sampling agent. A neces-
sary and sufficient condition for the agent to be covering is that there exists an
element σ∗ ∈ E∗ such that σ∗

i = 0 for all i > 2.

Proof. In order to prove sufficiency let τ ∈ Σ∗. As τ1 > 0 and τ2 > 0 (τ2 = 0
would imply τ = u(1)) and the agent is supportive we have πτ (σ

∗) > 0. Thus
the agent is covering. Conversely, if the agent is covering, choose τ ∈ Σ∗ with
τi = 0 for all i > 2. Let σ′ be an element of E∗ for which πτ (σ

′) > 0. From
proposition 26 we infer σ′

i = 0 for all i > 2 and hence we can choose σ∗ = σ′.

Definition 31 A sampling agent < Q, δ, f, µ > is consistent if

(τi ≥ τj ∧ σi ≥ σj) ⇒ πτ (σ) ≥ πτ (i↔j(σ)) (4.120)

for all i, j with strict inequality if τi > τj, σi > σj and πτ (σ) > 0.

Clearly, if one of the conjuncts in the left hand side of (4.120) is an equality
then also the right hand side is: If σi = σj then σ = i↔j(σ) and πτ (σ) =
πτ (i↔j(σ)). Likewise, if τi = τj then τ = i↔j(τ), πτ (σ) = πi↔j(τ)(σ) and using
the symmetry of π, πτ (σ) = πτ (i↔j(σ)). As a consequence, the requirement for
consistency can be restated as

(τi > τj ∧ σi > σj) ⇒ πτ (σ) ≥ πτ (i↔j(σ)) (4.121)

for all i, j with strict inequality if πτ (σ) > 0. Moreover, if the agent is supportive
we have the following
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Proposition 32 A supportive, sampling agent < Q, δ, f, µ > is consistent iff

(τi > τj ∧ σi > σj ∧ πτ (σ) > 0) ⇒ πτ (σ) > πτ (i↔j(σ)) (4.122)

Proof. The necessity of (4.122) follows immediately from (4.120) or (4.121). In
order to prove the condition to be sufficient for consistence we have to show that
whenever τi > τj, σi > σj and πτ (σ) = 0, also πτ (i↔j(σ)) = 0. Now, because w is
supportive, πτ (σ) = 0 implies that there exists a k such that τk = 0 and σk > 0.
Clearly k 6= i as τi > 0. If moreover k 6= j then we have [i↔j(σ)]k = σk > 0. If,
on the other hand k = j then [i↔j(σ)]k = σi > 0, so that [i↔j(σ)]k > 0 in all
cases. By proposition 26 we may then conclude πτ (i↔j(σ)) = 0.

4.5.2 Main result

Before introducing and proving our main theorem we need to introduce two
lemma’s.

Lemma 33 For any a, b ∈ R
n with

∑n
i=1 bi = 0,

if, for all m, 1 ≤ m < n,

am ≥ am+1 and (4.123)
m∑

i=1

bi ≥ 0 (4.124)

then
n∑

j=1

ajbj ≥ 0. (4.125)

If the inequalities (4.123) and (4.124) are simultaneously strict for at least one
m, then (4.125) is also strict.

Proof. The stated follows immediately from the following identity:

n∑

j=1

ajbj =
n−1∑

m=1

(
(am − am+1)

m∑

i=1

bi

)
. (4.126)
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Lemma 34 For any k, 1 ≤ k < n, and µ, ν ∈ {1..n} with µ 6= ν and e any
function with domain P, the following identity holds:

k∑

i=1

∑

p∈P
pi=µ

e(p)−
k∑

i=1

∑

p∈P
pi=ν

e(p) =
k∑

i=1

n∑

j=k+1

∑

p∈P
pi=µ
pj=ν

(
e(p)− e(i↔j ◦ p)

)
(4.127)

Proof. Rewriting the first term in the left hand side of (4.127) we get

k∑

i=1

∑

p∈P
pi=µ

e(p) =
k∑

i=1

n∑

j=1
j 6=i

∑

p∈P
pi=µ
pj=ν

e(p) (4.128)

=
k∑

i=1

( k∑

j=1
j 6=i

∑

p∈P
pi=µ
pj=ν

e(p) +
n∑

j=k+1

∑

p∈P
pi=µ
pj=ν

e(p)
)

(4.129)

=
k∑

i,j=1
j 6=i

∑

p∈P
pi=µ
pj=ν

e(p) +
k∑

i=1

n∑

j=k+1

∑

p∈P
pi=µ
pj=ν

e(p), (4.130)

in which the first term in (4.130) is symmetrical in µ and ν. Likewise, we can
derive the same expression, expect for µ and ν interchanged, for the second term
of the left hand side of (4.127). Therefore, these first terms cancel each other
out and we obtain

k∑

i=1

∑

p∈P
pi=µ

e(p)−
k∑

i=1

∑

p∈P
pi=ν

e(p) =
k∑

i=1

n∑

j=k+1

(∑

p∈P
pi=µ
pj=ν

e(p)−
∑

p∈P
pi=ν
pj=µ

e(p)
)

(4.131)

=
k∑

i=1

n∑

j=k+1

∑

p∈P
pi=µ
pj=ν

(
e(p)− e(i↔j ◦ p)

)
(4.132)

Theorem 35 (Main Result) The response function of a consistent, support-
ive, covering and amplifying agent < Q, δ, f, µ >:

φ(τ) =
∑

σ∈E
πτ (σ)f(σ)

is order preserving and amplifying.
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Proof of order preservation. Given τ ∈ Σ with τi > τj, we have to show
that φi(τ) > φj(τ). We have

φi(τ)− φj(τ) =
∑

σ∈E
πτ (σ)(fi(σ)− fj(σ)) (4.133)

=
∑

σ∈E
σi>σj

(πτ (σ)− πτ (i↔j(σ))) (fi(σ)− fj(σ)) (4.134)

The ignored terms with σi = σj do not alter this sum because then f(σ)i = f(σ)j
as f is order preserving. To show that this sum is strictly positive we turn to

τi − τj =
∑

σ∈E
πτ (σ)(σi − σj) > 0 (4.135)

which implies that there exists at least one element of E, say σ∗, for which
σ∗
i − σ∗

j > 0 and πτ (σ
∗) > 0. This implies that fi(σ

∗)− fj(σ∗) > 0, because f is
order preserving, and πτ (σ

∗)− πτ (i↔j(σ∗)) > 0, because the agent is consistent.
Returning to (4.134) we may conclude that at least one term is strictly positive.

Proof of amplification. Let τ ∈ Σ′. We now have to prove that

k∑

i=1

(φi(τ)− τi) ≥ 0, (4.136)

with strict inequality if τ ∈ Σ∗, k < n and τk+1 > 0. We have

φi(τ)− τi =
∑

σ∈E
πτ (σ)fi(σ)−

∑

σ∈E
πτ (σ)σi (4.137)

=
∑

σ∈E
πτ (σ)(fi(σ)− σi) (4.138)

=
∑

σ∈E
πτ (σ)di(σ) (4.139)

with an auxiliary function d(σ) = f(σ) − σ. Note that d is a symmetrical
function and

∑n
i=1 di(σ) = 0. We now divide the summation domain E into n!

summations over S ′, using permutations to cover the original set:

∑

σ∈E
πτ (σ)di(σ) =

∑

σ∈E′

1

ρ(σ)

∑

p∈P

πτ (p(σ))di(p(σ)) (4.140)

with ρ(σ) = #{p ∈ P | p(σ) = σ}.
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Rewriting the second sum in the right hand side of (4.140) using di(p(σ)) =
pi(d(σ)) = dpi

(σ) and sub-dividing the permutations we obtain

∑

p∈P

πτ (p(σ))di(p(σ)) =
n∑

j=1

∑

p∈P

pi=j

πτ (p(σ))dpi
(σ) (4.141)

=
n∑

j=1

∑

p∈P

pi=j

πτ (p(σ))dj(σ) (4.142)

=
n∑

j=1

[∑

p∈P

pi=j

πτ (p(σ))
]
dj(σ) (4.143)

If we now return to (4.136) and apply (4.140) and (4.143) we get

k∑

i=1

(φi(τ)− τi) =
∑

σ∈E′

1

ρ(σ)

n∑

j=1

[ k∑

i=1

∑

p∈P

pi=j

πτ (p(σ))
]
dj(σ). (4.144)

Now we use lemma 33 to prove that the right hand side of (4.144) non-
negative in general and strictly positive under stronger assumptions on τ . We
identify aj with

∑k
i=1

∑
p∈P

pi=j
πτ (p(σ)) and bj with dj(σ).

First we prove that (4.144) is always nonnegative. Condition (4.124) be-
comes

m∑

l=1

dl(σ) =
m∑

l=1

(sl(σ)− σl) ≥ 0, (4.145)

which holds as a direct consequence of f being amplifying and σ ∈ E ′.
Regarding condition (4.123) and using lemma 34 with e(p) = πτ (p(σ)), µ =

m and ν = m+ 1, we have

am − am+1 =
k∑

i=1

∑

p∈P
pi=m

πτ (p(σ))−
k∑

i=1

∑

p∈P

pi=m+1

πτ (p(σ)) (4.146)

=
k∑

i=1

n∑

j=k+1

∑

p∈Pn
pi=m

pj=m+1

[
πτ (p(σ))− πτ (i↔j(p(σ)))

]
. (4.147)

Now, as τ ∈ Σ′ and i < j we have τi ≥ τj. Also, pi(σ) ≥ pj(σ) as pi(σ) = σpi
=

σm, pj(σ) = σm+1 and σ ∈ E ′. Therefore, with the agent consistent, we infer
πτ (p(σ)) ≥ πτ (i↔j(p(σ))). Hence, (4.147) is always nonnegative.
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In order to show (4.144) to be strictly positive if τ ∈ Σ∗, k < n and τk+1 > 0,
there must exist at least one σ and m for which the inequality in (4.145) is strict
and (4.147) is strictly positive. The former requirement is fulfilled if

σ ∈ E∗ (4.148)

σm+1 > 0 (4.149)

because f is amplifying. The latter is fulfilled if

πτ (p(σ)) > 0 (4.150)

τi > τj (4.151)

σm > σm+1, (4.152)

for at least one term in i, j and p in (4.147), because the agent is consistent,
σm > σm+1 is equivalent to pi(σ) > pj(σ) and regarding proposition 32.

To show this, choose σ ∈ E∗ with πτ (σ) > 0. Such a σ exists because the
agent is covering. Next, choose m such that σm > σm+1 > 0, which is possible
regarding (4.102). With these choices, (4.148), (4.149) and (4.152) hold.

As for condition (4.151), let j be the greatest index for which τj > 0. Clearly
j ≥ k+1. Next, choose i ≤ k such that (4.151) holds, which is possible as τ /∈ U .

Regarding condition (4.150), we first show that m+1 ≤ j. As πτ (σ) > 0 we
have τ ⋗ σ. Considering σm+1 > 0 this means that τm+1 > 0 and by definition
of j that m + 1 ≤ j. Next, we choose p ∈ P, with pi = m, pj = m + 1 and
for which pl ≤ j ⇔ l ≤ j or in words the permutation must not mix elements
below j with elements strict above j. The existence of such a permutation is
guaranteed by m + 1 ≤ j. Then, as τ ∈ Σ∗ there holds τl > 0 ⇔ l ≤ j, such
that τ ⊜ p(τ). Finally, by proposition 28 we may conclude that πτ (p(σ)) > 0.

4.5.3 An amplifying map

As an example an amplifying map, consider v : Σ→ Σ, with α ∈ R and α > 1
defined as

vi(σ) =
σαi∑n
j=1 σ

α
j

. (4.153)

In order to establish symmetry and order preservation, we have

vi(p(σ)) =
pi(σ)α∑n
j=1 pj(σ)α

=
σαpi∑n
j=1 σ

α
j

= vpi
(σ) = pi(v(σ)) (4.154)

and

σi < σj ⇔ σαi < σαj ⇔
σαi∑n
k=1 σ

α
k

<
σαj∑n
k=1 σ

α
k

(4.155)
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With regard to amplification, we have to prove that, for σ ∈ Σ′,

k∑

i=1

vi(σ)−
k∑

i=1

σi ≥ 0, (4.156)

with strict inequality if σ ∈ Σ∗, k < n and σk+1 > 0. We have

k∑

i=1

(si(σ)− σi) =
k∑

i=1

(
σαi∑n
j=1 σ

α
j

− σi∑n
j=1 σj

)
(4.157)

=
1∑n

j=1 σ
α
j

k∑

i=1

n∑

j=1

(σαi σj − σiσαj ) (4.158)

=
1∑n

j=1 σ
α
j

k∑

i=1

n∑

j=k+1

(σαi σj − σiσαj ) (4.159)

=
1∑n

j=1 σ
α
j

k∑

i=1

n∑

j=k+1

σiσj(σ
α−1
i − σα−1

j ) (4.160)

having used the symmetry in i and j in the summand of (4.158). As σ is
decreasing and i < j it follows σi ≥ σj and hence σα−1

i ≥ σα−1
j , such that

(4.160) is nonnegative. If moreover σ ∈ Σ∗ and σk+1 > 0 then there exist i,j
with 1 ≤ i ≤ k < j ≤ n such that σi > σj > 0 and therefore (4.160) is strictly
positive.

4.5.4 A consistent sampling function

We will now show that the *queue-agent with k ≥ 3, is sampling, support-
ive, consistent and covering. A queue s ∈ Zk is associated with the element
µ(s) = 1

k
(d1(s), . . . , dn(s)). E = µ(Q) is thus a symmetrical (invariant under

any permutation in Pn) subset of Σn of size
(
n+k−1

k

)
.

For the stationary distribution of the Markov chain induced by a behavior
τ ∈ Σn holds that

πτ (σ) = πτ (
1

k
(x1, x2, . . . , xn)) =

k!∏n
i=1 xi!

n∏

i=1

τxi
i (4.161)

with the convention 00 = 1. Clearly, the agent is supportive, as πτ (σ) = 0
implies τi = 0 and xi > 0 for some i. To demonstrate consistency, we make
use of proposition 32 and assume τi > τj, xi > xj or equivalently σi > σj and
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πτ (σ) > 0. We then have to show that πτ (σ) > πτ (i↔j(σ)). If πτ (i↔j(σ)) = 0
this holds, otherwise we have

πτ (σ)

πτ (i↔j(σ))
=

τxi
i τ

xj

j

τ
xj

i τ
xi
j

=

(
τi
τj

)xi−xj

> 1. (4.162)

Considering the element 1
k
(k− 1, 1, 0, . . . , 0) from E, which is in E∗ if k ≥ 3,

we may conclude from proposition 30 that the agent is also covering. The
problem with k = 1 or k = 2, is that we have respectively E = {(1, 0), (0, 1)}
and E = {(1, 0), (1

2
, 1

2
), (0, 1)}, in case of two alternatives (with more alternatives

the reasoning is similar). In both cases there are no observations which can be
amplified. We obviously have f ((1, 0)) = (1, 0) and f ((0, 1)) = (0, 1), but also
necessarily f

(
(1

2
, 1

2
)
)

= (1
2
, 1

2
). Hence f(σ) = σ for all σ ∈ E and

t(τ) =
∑

σ∈E
πτ (σ)f(σ) =

∑

σ∈E
πτ (σ)σ = τ, (4.163)

using (4.53).



Chapter 5

Convention problems with
partial information

In this chapter we consider the two convention problems CP3 and CP4. Similar
to CP1 and CP2 discussed before, these convention problems have a flat con-
vention space Z = {1, . . . n}. The difference lies in the amount of information
the agents gain during an interaction. While in CP1 and CP2 agent II always
learns the current preference of agent I, in CP3 and CP4 this is not the case.

In CP3 the interaction is symmetrical. Both agents simultaneously ‘propose’
their own current preference and only learn whether they chose the same alter-
native or not. During an interaction in CP4, agent II only learns that agent I’s
preferred alternative is in some subset of the convention space Z.

Unlike our approach for CP1 and CP2, we will not try to find general char-
acteristics which guarantee agents to solve these problems. The reason is simply
that, at this point, we consider it too difficult a task. Instead, for CP3 we focus
on a particular class of agents, namely learning automata. For CP4 we describe
the process of designing an appropriate agent in 5.2.

5.1 CP3—Can learning automata reach agree-

ment?

5.1.1 Introduction

The most important feature of CP3 that distinguishes it from the other con-
vention problems, is that the information an agent gains during an interaction
depends on its own behavior. Recall that in CP3 an agent only learns the other
agent’s preference if it happens to be the same as its own. A consequence of
this is that agents in CP3 necessarily have to explore other alternatives than

113
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their current preferred one. Suppose n = 3 and we have two agents which cur-
rently prefer respectively alternative 1 and 2. Their interactions will keep on
failing unless they occasionally try another alternative—even if they have no
clue which of the remaining two has more chance on success. This exploration
can be achieved by choosing randomly between the alternatives, according to
some distribution which may change over time.

This reminds of the standard setting in reinforcement learning where an
agent is situated in an environment, can perform an action from a certain set
and receives a payoff dependent on its action.

There are various reinforcement schemes, like Q-learning, that are known
to perform well if the environment can be modeled as a Markov Decision Pro-
cess. As the environment consists of other agents that also continuously adapt
their policies, this condition however does not hold. There exists a large body
of research that investigates standard and adapted reinforcement schemes in a
multi-agent setting (e.g. in Littman (1994); Hu and Wellman (1998); Chalki-
adakis and Boutilier (2003); Kapetanakis and Kudenko (2004); Tuyls and Nowe
(2005)). Yet as argued before in section 2.6.1, it is mostly assumed that all
agents take part in every interaction, unlike the global interaction model we
adopt.

We will not attempt to give a general account for the performance of dif-
ferent reinforcement schemes in our global interaction multi-agent setting. We
will rather focus on one particular class of reinforcement schemes, namely learn-
ing automata as introduced in Narendra and Thathachar (1989) and thereby
illustrate the applicability of the response analysis to this setting.

5.1.2 Learning automata as agents in CP3

The environment

We start with an interpretation of the environment of an automaton, as de-
scribed in Narendra and Thathachar (1989, chap. 2). Mathematically, an envi-
ronment is a triple {α, c,β}, where α = {α1, . . . , αr} is an input set, β = {0, 1}
is the binary output set and c = {c1, . . . , cr} a set of penalty probabilities, where
each element ci corresponds to the input αi.

If an input αi is applied to the environment, the output is either 0 or 1,
which is identified with success and failure, respectively. The probability to
have a failure for input αi is given by the penalty probability ci.

In the context of CP3, the environment of an automaton/agent consists of
the other agents in the population. The input set to this environment are the
alternatives, so r = n. When an agent chooses alternative i (i.e. input αi), the
output of the environment, 0 or 1 encodes whether the other agent also chose
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alternative i or not.1 The penalty probability ci hence is the probability that the
other agent does not choose alternative i. If the population behavior is σ ∈ Σ
and the agent interacts with a random agent, we have c = 1− σ.

The automata

With regard to the automata themselves, we only consider variable structure
automata. These automata update their action probabilities q = {q1, . . . , qn}
based on the inputs they receive.2 Each qi specifies the probability with which
the automaton chooses output αi. Hence q ∈ Σ.

A variable-structure automaton interpreted as an agent in CP3 has a state
space Σn and a behavior function which is the identity function: the agent’s
internal state is at the same time its behavior. The different update schemes
of the automata we will consider, correspond to different transition functions of
the agent.

We now consider two types of automata: the Linear Reward-Penalty- and
the Linear Reward-ǫ-Penalty automaton. A third well-known automaton, Linear
Reward-Inaction, is not considered as it is not an ergodic update scheme and
consequently not an ergodic agent, as we show further on.

5.1.3 Why Linear Reward-Penalty fails

The first variable-structure automaton we investigate, is the linear, reward-
penalty automaton or LR−P . If the automaton chooses alternative i and inter-
acts with a behavior σ ∈ Σ, its state q is updated to q′ as follows:

q′ =

{
(1− a)q + ae(i) in case of success

(1− a)q + a
n−1

(1− e(i)) in case of failure
(5.1)

with a ∈ [0, 1] a constant and whereby success and failure occur with probability
σi and 1− σi, respectively.

In Narendra and Thathachar (1989, chap. 5) it is shown that this update
scheme is ergodic. This means that if this automaton interacts repeatedly with
a fixed behavior, its state q will converge to a random vector q∗. As a result its
response to this behavior is well-defined. Moreover, as the behavior function is

1We use this interpretation of 0 and 1 to be consistent with the literature on learning
automata. They should not be confused with e.g. the payoffs of a coordination game, which
have the opposite interpretation.

2The roles of input and output are reversed when switching from the environment to an
automaton.
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the identity function, we have

φ(σ) = E[f(q∗)] (5.2)

= E[q∗]. (5.3)

For a small parameter a, E[q∗] is the state q for which the expected change
after an interaction

E[∆qi] = qi (σia(1− qi)− (1− σi)aqi)

+
n∑

j=1
j 6=i

qj

(
σj(−aqi) + (1− σj)a

(
1

n− 1
− qi

))
(5.4)

=
a

n− 1

(
1− nqi(1− σi)−

n∑

j=1

qjσj

)
(5.5)

is zero. If q is not a unit vector, this results in

qi = φi(σ) =
vi∑n
j=1 vj

with vi =
1

1− qi
(5.6)

corresponding to Narendra and Thathachar (1989, section 4.7), with ci = 1−σi.
If σ is a unit vector, σ = e(i), we have φ(e(i)) = e(i).

Concerning the fixed points of the response function, apart from the unit
vectors, we have σ = φ(σ) if (using (5.6)):

σi(1− σi) =
1∑n
j=1 vj

. (5.7)

If n = 2, we find that all σ ∈ Σ2 fulfill (5.6). Hence in this case the response
function is the identity function. If n > 2, we have necessarily σ1 = σ2 = . . . =
σn = 1

n
, or σ = τ c = ( 1

n
, . . . , 1

n
)T.

We will now show that the stability of these equilibria of the response system
are exactly opposite to what is necessary to reach a convention: the central
equilibrium is stable and the unit vectors are unstable. Therefore we make use
of the following

Proposition 36 Given a symmetrical response function φ : Σ → Σ for which
the unit vectors e(i) are fixed points. Let

ω(x) = xe(1) +
1− x
n− 1

(1− e(1)) (5.8)

and
h(x) = φ1(ω(x)) (5.9)

The equilibria e(i) and τ c of the response system σ̇ = φ(σ)− σ are asymptoti-
cally stable iff h(x) < 1 in respectively x = 1 and x = 1

n
.
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Figure 5.1: The response of a LR−P automaton to a behavior, symmetrical
in all but the first component, x.

For the LR−P -automaton we obtain, using (5.6), that

h(x) =
n+ x− 2

(1− x)n2 + (2x− 1)n− 1
. (5.10)

In figure 5.1 this response is plotted for n = 4. The graph shows the stability in
the central point (x = 0.25) and the instability in the first unit vector (x = 1).

Indeed we get

h′(x) =
(n− 1)3

((1− x)n2 + (2x− 1)n− 1)2 (5.11)

which evaluates to
1

n− 1
in x =

1

n
(5.12)

n− 1 in x = 1 (5.13)

which is respectively smaller and greater than 1, for n > 2. In other words, the
response function is not amplifying.

To conclude, the LR−P -scheme is not suitable as an update strategy for
agents trying to reach a convention; their behaviors will converge to a complete
mix of all available alternatives.

5.1.4 Linear Reward ǫ-Penalty

In case of the LR−ǫP automaton, the update scheme is as follows:

q′ =

{
(1− a)q + ae(i) in case of success

(1− ǫa)q + ǫa
n−1

(1− e(i)) in case of failure
(5.14)
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with 0 < ǫ ≤ 1. For ǫ = 1 we obtain the LR−P scheme again. A similar analysis
as in the previous section shows that3

E[∆qi] = a

n∑

j=1

qj

(
ǫ

(
1− δij
n− 1

− qi
)

(1− σj) + (δij − qi)σj
)

(5.15)

Due to the non-linearity of (5.15) in q it is not possible to find the zero’s of this
expression in closed form as in (5.6). This implies that the response function
cannot be determined analytically in general. We restrict ourselves to behaviors
σ of the form ω(x). By symmetry, the response to such a behavior will have a
form ω(y). Therefore it suffices to evaluate (5.15) under these restrictions and
to consider only the first component E[∆q1] = E[∆y] for which we get

E[∆y] =
a

(n− 1)2
g(x, y) (5.16)

with

g(x, y) = (n− 1)(nx− 1)y(1− y(1− ǫ))− (n+ x− 2)(ny − 1)ǫ. (5.17)

By setting E[∆y] = g(x, y) = 0, an analytic expression y = h(x) can be obtained
as g(x, y) is quadratic in y. Analogous to the LR−P updating scheme we find
that x = 1

n
and x = 1 are fixed points, corresponding respectively to the central

behavior τ c and the unit vectors. Figure 5.2 shows the response for n = 3 and
for varying values of ǫ. For ǫ = 1, we get figure (5.6) again and initially for
decreasing ǫ the graph remains qualitatively the same. For ǫ below a certain
threshold ǫ∗, however, a third fixed point x0 appears. Initially we have x0 > 1/n,
but below a second threshold ǫ∗∗ we get x0 < 1/n. Schematically we get,

area I ǫ < ǫ∗∗ (x0)
− (1/n)+ (1)−

area II ǫ∗ < ǫ < ǫ∗∗ (1/n)− (x0)
+ (1)−

area III ǫ∗∗ < ǫ (1/n)− (1)+

(5.18)

with the sign of h′(x)− 1 in the fixed points shown in superscript. In order to
determine the values of ǫ∗ and ǫ∗∗, we observe that the transition between area
I and II thus occurs if h′(1/n) = 1 and between area II and III if h′(1) = 1.
Because g(x, h(x)) = 0, it follows that, with y = h(x),

h′(x) = −
∂g
∂x

(x, y)
∂g
∂y

(x, y)
(5.19)

= − ǫ+ ny(y + n(y(ǫ− 1) + 1)− (y + 1)ǫ− 1)

(n− 1)(nx− 1)(2y(ǫ− 1) + 1)− n(n+ x− 2)ǫ
(5.20)

3δij is the Kronecker delta: δij = 1 if i = j, otherwise δij = 0.
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Figure 5.2: The response of the LR−ǫP -automaton to a behavior, symmet-
rical in all but the first component, x, for ǫ ranging from 0.1 to
1 in steps of 0.1.

Substituting x = y = 1 in (5.20) (using the fact h(1) = 1) we obtain

h′(1) =
(n− 1)ǫ

n(1− ǫ) + 2ǫ− 1
(5.21)

and similarly, for x = y = 1
n

we get

h′(1/n) =
n+ ǫ− 1

(n− 1)nǫ
(5.22)

which leads to

ǫ∗ =
n− 1

n2 − n− 1
ǫ∗∗ =

n− 1

2n− 3
(5.23)

In figure 5.3 the resulting areas I, II, III are drawn in the n-ǫ plane.
An analysis of the performance of the LR−ǫP scheme is rather easy for areas

II and III. In general the existence of at least one stable suboptimal equilibrium
of the response system renders a strategy inappropriate for guiding agents to a
convention. In both areas II and III, τ c is such a stable suboptimal equilibrium,
as can be read from table (5.18). In area III the properties are exactly like the
LR−P scheme: the central point is globally stable. In area II the unit vectors
are also stable equilibria with a limited basin of attraction.

We verify these properties by simulating a population of 100 LR−ǫP -automata
in the case n = 3 and a = 0.1, both for ǫ = 1 and for ǫ = 0.55. These values
of ǫ correspond to areas III and II respectively, as can be read from figure 5.3.



120 CHAPTER 5. CP’S WITH PARTIAL INFORMATION

0.5

0.25

0.75

1

5 10 15 20

ǫ

n

ǫ∗∗

ǫ∗

I

II

III

Figure 5.3: Three areas in the n-ǫ plane in which the LR−P -automaton has
a qualitatively different response function.

Figure 5.4a and 5.4b show the evolution of the average state (and behavior) of
the population, for several runs starting from different initial conditions near
the sides of the triangle. For ǫ = 1 all trajectories converge to τ c. For ǫ = 0.55
the trajectories converge either to τ c or to one of the corners of the simplex,
depending on the initial conditions and on chance.

Regarding area I we have to be more careful to draw conclusions. First of
all, we cannot conclude from h′(x0) < 1 that ω(x0) is a stable equilibrium of the
response function. The point might be (and probably always is) unstable in the
space orthogonal to the one-dimensional space {ω(x) | x ∈ [0, 1]} (proposition
36 only applies to x = 1/n and x = 1). Secondly, there might be stable equilibria
not of the form ω(x) (or one of its permutations).

Figure 5.4(c) shows a similar evolution as figures 5.4(a) and 5.4(b), with
ǫ = 0.2, corresponding to area I. It seems—at least in this case— that ω(x0)
and its permutations are saddle points and thus unstable. Also, there appear
to be no other stable equilibria than the unit vectors, because all trajectories
converge to one of them. While we believe these stability properties also apply
to n > 3, we do not have a rigorous argumentation for this at present.

To conclude, it seems that the LR−ǫP -automaton is able to solve CP3 if its
parameter ǫ is chosen appropriately.

5.2 CP4

Let us briefly recall that in CP4, agent I’s current preference, say z, is hidden in
a context C ∈ Z which contains, apart from of z, k − 1 randomly chosen other
alternatives. During an interaction, agent II only learns that z ∈ C.
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a)

b)

c)

Figure 5.4: The evolution of the average state of a population of 100 LR−ǫP -
automata trying to solve CP3 with n = 3. The parameter
settings are a = 0.1 and ǫ = 1, 0.55 and 0.2 in respectively a)
b) and c). In a) and b) all trajectories start on the border of
the triangle. In c) some also start from near τ c.
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In this section we will design an agent which is ergodic and solves CP4. This
happens through a series of intermediary agents which fulfill some but not all
of the requirements we put forward. The final agent we will define, agent 4d, is
similar to an update strategy we put forward in de Beule et al. (2006), however
slightly more elegant.

5.2.1 A naive approach

In the case of CP1 and CP2 we showed that the capability of an agent for
learning an existing convention is not sufficient for being able to develop a
convention from scratch. An example was the imitating agent, which simply
prefers the alternative it last observed. While this agent can easily adopt an
already established convention, we showed that it does not solve CP1 or CP2,
as its response function is not amplifying (in fact, this function equaled the
identity function).

Our first example of an agent for CP4 will also serve to stress the fact that
being able to adopt a convention is not enough for solving a convention problem.
Therefore we introduce the following agent:

Agent 4a The state space is Q = 2Z \{∅}, i.e. the set of all subsets of Z expect
the empty set. An agent in state q, a subset of Z, observing a context C,
makes the following transition:

δ(q, C) =

{
q ∩ C if q ∩ C 6= ∅
C otherwise

If in role I, the agent chooses randomly between the alternatives consti-
tuting its state.

We now consider the case of three alternatives n = 3 and Z = {1, 2, 3}, and
a context of two objects: k = 2 (the only interesting choice in this case). For
example, if agent I prefers 1, then in an interaction agent II will observe the
context {1, 2} or {1, 3} with equal probability. The agent’s state space consists
of 7 (= 23 − 1) states. The state {1, 2, 3} is however transient. For agent 4a it
holds in general that states with more than k elements are transient.

The behavior space is Σ3 and the response function φ : Σ3 → Σ3 can be
analytically derived, yet we omit its rather large expression. Instead, in figure
5.5 a phase plot of the resulting response system is given. One can clearly
observe that the only stable equilibrium is the complete symmetrical one. The
corners of the simplex are thus unstable. This means that, even if the population
has reached a state in which every agent agrees on the same alternative, one
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Figure 5.5: The phase plot of the response system of agent 4a in CP4 with
n = 3 and k = 2.

agent making a mistake will destroy this optimal equilibrium and the behavior
of the population will degrade to a mixed preference of all alternatives.

We now introduce the simplest possible agent—in our view—which is capable
of reaching a convention in CP4. This simplicity comes at a cost, however, in
that the agent is not ergodic.

5.2.2 A non-ergodic agent

Consider an agent which counts for each object the number of times he observed
it in a context. When in role I, the agent chooses the alternatives which the
largest counter. Or more precisely,

Agent 4b The agent has state spaceQ = N
n. An agent in state q = (q1, . . . , qn)

observing a context C, makes the following transition:

δi(q, C) =

{
qi + 1 if i ∈ C
qi otherwise

The agent prefers the alternative which occurred most frequently, choosing
randomly if there are ties.

This agent is clearly not ergodic as
∑n

i=1 qi is a strictly increasing function of
time. This does however not mean that agent 4b is not able to reach a convention
as we will argue now.

A rigorous analysis of the performance of this agent is beyond the scope of
this thesis and requires techniques that relate to Polya urn processes (for such
an approach, see e.g. Arthur (1994); Kaplan (2005)). We can however gain an
intuitive understanding. If we let agent 4b interact repeatedly (in role II) with
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a behavior σ ∈ Σn, the counters q1, . . . , qn will keep on increasing. Let t ∈ Z
be the topic in a random interaction. That is, t is a stochastic variable with
distribution σ. The probability that alternative i is in the context, then equals

Pr[i ∈ C | σ] = Pr[i = t | σ] + Pr[i ∈ C | i 6= t, σ] (5.24)

= σi + (1− σi)
k − 1

n− 1
(5.25)

= (1− a)σi + a (5.26)

with a = (k − 1)/(n − 1). Thus after an interaction, each counter qi will be
increased with probability (1− a)σi + a. By the law of large numbers, with K
the number of interactions of the agent, we then have

lim
K→∞

qi
K

= (1− a)σi + a. (5.27)

Because
σi < σj ⇔ (1− a)σi + a < (1− a)σj + a (5.28)

the ordering of the counters will be the same as the ordering of σ, for K →∞.
Therefore agent 4b’s preference will converge to the alternative i for which σi
is maximal. This means that, if we were to define a response function for
this agent, it would be a discontinuous function which maps a behavior σ to
the i-th unit vector, with σi the maximal element. We could say that the
agent is ‘infinitely amplifying’. This explains why this agent is able to reach a
convention.

Figure 5.6 shows the evolution of the state of one agent in a population of 20
agents for n = 10 and k = 4. After some time one alternative, say i∗, obviously
prevails. We have that qi∗/K → 1 and qj/K → a with a = 0.33. Note that
K are the number of interactions the agent has participated in, not the total
number of interactions between all agents.

With regard to the adaptiveness of agent 4b, this decreases with the number
of interactions it has. If an agent from a population which agreed on a certain
convention, is put into another population where another convention is used,
the time it will take for the agent to adapt to this new convention will depend
on the ‘age’ of the agent, i.e. on the number of interactions it participated in
before.

If we want to design an agent whose adaptiveness does not decrease over
time, we have to look for an agent which is ergodic.

5.2.3 An ergodic agent with fluctuating state

There is a straightforward way to transform agent 4b into an ergodic agent.
Instead of keeping track of the total number of times each alternative has been



5.2. CP4 125

0 100 200 300

0.2

0.4

0.6

0.8

1.0

K

q/K

Figure 5.6: The evolution of the state of an agent of type 4b in a population
of 20 agents and with n = 10 and k = 4 as parameters of CP4.

observed, we can estimate the probability to observe each alternative by a run-
ning average. More precisely, we define

Agent 4c The agent has state space Q = [0, 1]n. An agent in state q =
(q1, . . . , qn) observing a context C, makes the following transition:

δi(q, C) =

{
(1− α)qi + α if i ∈ C
(1− α)qi otherwise

(5.29)

With α ∈ [0, 1]. The agent prefers the alternative i with the highest value
qi, choosing randomly if there are ties.

Agent 4c is ergodic because from (5.29) follows that the agent forgets its
past with a discounting factor α. The agent actually estimates the probabilities
to observe each alternative. Consequently, for fixed behavior σ, the state q will
be on average (1 − a)σ + a, using (5.26). The size of the deviations from this
average depends on the parameter α. These deviations, however, can never
kick a population out of a state in which they reached a convention. Indeed,
a population has reached a convention if the alternative with the highest value
in q is the same for all agents. In any interaction onward, this alternative, say
i∗, will be in the context and by (5.29) it follows that qi∗ will always stay the
maximal element in q, for all agents.

This reasoning also suggests that this agent, with an appropriate value for
α, depending on k and n, will solve CP4. Figure 5.7 shows the evolution of the
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Figure 5.7: The evolution of the state of an agent of type 4c for CP4 in
a population of 20 agents, with α = 0.1. CP4 has parameters
n = 10 and k = 4.

state of one particular agent in a population of 20 agents, with α = 0.1 and
n = 10 and k = 4 as parameters of CP4.

While agent 4c is apparently capable of establishing a convention and is
ergodic, one unsatisfactory aspect remains however. Even in case a population
reached a convention, an agents’ internal state does not converge; the values qj
for j 6= i∗ keep fluctuating around a.

5.2.4 An agent with a converging state

We now try to define an agent which internal state converges if a convention is
reached. Let us take the agent’s state space as Σn. We now attempt to find
an update rule such that the state converges to the i∗-th unit vector in case
alternative i∗ becomes the convention.

Suppose for a moment that the population has reached a state in which
alternative i∗ is the convention and let us consider one particular agent. Every
context the agent observes, will contain i∗. Hence, if the update rule always
increases the values qj for all j ∈ C, then qi∗ is increased in every interaction
and necessarily converges to some value4. If this value is 1, then by q ∈ Σ
follows that all other values qj, j 6= i are 0.

Let us use the shorthand q′ , δ(q, C) for the (still to define) transition

4All bounded monotone sequences converge.
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function δ. For a state q ∈ Σ and any set S ⊂ Z we write q(S) ,
∑

i∈S qi. The
set of all alternative not in the context is written as ¬C.

Now, suppose we want δ to have the following property:

q′(C) = (1− α)q(C) + α (5.30)

q′(¬C) = (1− α)q(¬C), (5.31)

for some constant α ∈ [0, 1]. Actually, either of these two equations implies the
other as necessarily q′(C) + q′(¬C) = 1. We choose to update the individual
values similar to the equations (5.30) and (5.31), i.e.

q′i =

{
(1− β)qi + β for i ∈ C
(1− α)qi otherwise

(5.32)

The reason we write β instead of α in (5.32) becomes clear if we derive its value.
From (5.32) we get

q′(C) =
∑

i∈C
q′i = (1− β)q(C) + kβ (5.33)

from which follows that, using (5.30)

β =
α(1− q(C))

k − q(C)
(5.34)

So unless k = 1, β < α. This update schema increases all values qi for i ∈ C
so that convergence of the agent’s state to a unit vector is guaranteed, in case
a convention is reached.

We then define the following agent:

Agent 4d The agent has state spaceQ = Σn. The agent’s transition function is
given by (5.32) with β defined by (5.34). The agent prefers the alternative
i with the highest value qi, choosing randomly if there are ties.

Figure 5.7 shows the evolution of the state of one particular agent of type
4d with α = 0.3 in a population of 20 similar agents, with n = 10 and k = 4
as parameters of CP4. Let i∗ be the prevailing alternative. The fact that for
j 6= i∗, qj → 0, does not make the agent non-ergodic: even if an agent’s state is
exactly the i∗-th unit vector, he is able to adopt a new convention.
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Figure 5.8: The evolution of the state of an agent of type 4c with α = 0.1 in
a population of 20 similar agents solving CP4 with parameters
n = 10 and k = 4.

5.3 Discussion and conclusions

This chapter dealt with convention problems in which the agents in an interac-
tion cannot directly observe the choice of the other agent.

For CP3, we investigated whether learning automata are capable of reaching
a convention. It turned out that the answer to this question depends on the
specific automaton at hand. We showed both theoretically and by experiment
that the LR−P -automaton is not, and LR−ǫP -automata are, suitable for solving
the convention problem. This latter fact, however, depends crucially on the
parameter ǫ. While the performance of an LR−ǫP -automaton in its original
environment (in which it tries to minimize penalties), depends continuously on
this parameter, this is apparently not the case if a collection of these automata
interact to reach convention. It turns out that ǫ should be below a threshold
which depends on the number of alternatives n.

Concerning CP4, we designed an which we argued is (i) ergodic, (ii) which
solves CP4 and (iii) for which the state of an agent converges if convention is
reached. While (iii) follows rather easily from the update scheme of the agent, a
solid argumentation for (i) and (ii) remains to be developed. We can reasonably
expect that the agent will only be amplifying for values of its parameter α below
a threshold which depends on k and n, similar to the LR−ǫP -automaton.
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5.4 Mathematical Background for 5.1

The stability properties of hyperbolic equilibria of a dynamical system can be
determined by a linear approximation of the system (see e.g. Hirsch and Smale
(1974)) in the equilibrium. For the response system σ̇ = φ(σ)−σ with a given
equilibrium point σ∗ = φ(σ∗) we get the linear approximation

∆̇σ = (Jφ − I)∆σ (5.35)

where Jφ is the Jacobian matrix of φ, or

Jφ =





∂φ1

∂σ1

∂φ1

∂σ2
. . . ∂φ1

∂σn
∂φ2

∂σ1

∂φ2

∂σ2
. . . ∂φ2

∂σn
...

...
...

∂φn

∂σ1

∂φn

∂σ2
. . . ∂φn

∂σn




(5.36)

The matrix Jφ is not uniquely determined. One cannot take a partial deriva-
tive of one component while keeping the others constant, as this would violate∑n

i=1 σi = 1. This implies that the Jacobian can have any form

Jφ + v1T (5.37)

with v ∈ R
n. This indeed does not alter (5.35) because 1T∆σ = 0.

As (5.35) is only a n− 1 dimensional system, we can eliminate e.g. its first
component. For any v ∈ R we write v = (v2, . . . , vn) and for any (n−1)×(n−1)
matrix A = {aij} we define

A =





a22 − a21 a23 − a21 . . . a2n − a21

a32 − a31 a33 − a31 . . . a3n − a31
...

...
...

an2 − an1 an3 − an1 . . . ann − an1




(5.38)

The system (5.35) can than be written as

∆̇σ = A∆σ (5.39)

whereby A = Jφ − In = Jφ − In−1. Hereby we used the fact that ∆σ1 =
−∑n

i=2 ∆σi.
Proof of proposition 36. Due to the symmetry of φ and τ c it is possible

to put Jφ(τ c) in the following form:




a b . . . b
b a . . . b
...

...
...

b b . . . a




(5.40)
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Applying (5.37) with v = −b1, Jφ(τ c) can even be put in the form a′I, where
a′ = a − b. This means that for the reduced system we have (5.39) A =
(a′ − 1)In−1 with all eigenvalues equal to a′ − 1 and asymptotic stability iff
a′ − 1 < 0. Now, as we have

h′(1/n) =

(
∂φ1

∂ω

)T
∣∣∣∣∣
τc

ω′(1) = (a′, 0, . . . , 0)





1
− 1
n−1
...

− 1
n−1




= a′ (5.41)

the stated is proven for x = 1
n
.

Regarding x = 1, corresponding to ω(x) = e(1), due to the symmetry in all

but the first component, the matrix Jφ(e(1)) is a (n− 1)× (n− 1)-matrix of the
form (5.40). For small σ it holds that

φ(σ) ≈ φ(0) + Jφ(e(1))σ = Jφ(e(1))σ. (5.42)

From this and φ(σ) ≥ 0 at all times, we necessarily have that a ≥ 0 and b ≥ 0.

As Jφ(e(1)) = (a− b)In−1 + b11T we have A = (a− b− 1)I + b11T. If b = 0
all vectors are eigenvectors with eigenvalue (a− 1). If b > 0 we have

((a− b− 1)I + b11T)v = λv ⇔ (a− b− 1− λ)v = −b(1Tv)1 (5.43)

So one eigenvector is v(1) = 1 with eigenvalue λ1 = a + b(n − 2) − 1. The
orthogonal eigenspace is characterized by 1Tv = 0 with eigenvalue λ2 = a−b−1.
As λ2 = λ1 − (n − 1)b and b ≥ 0, λ1 < 0 implies λ2 < 0 and the system is
asymptotically stable iff λ1 < 0.

Let us now turn to h(x) = φ1(ω(x)) = 1−∑n−1
i=1 φi(ω(x)).5 We have

h′(1) = −
n−1∑

i=1

d φi(ω(x))

d x

∣∣∣∣
1

(5.44)

= −
(
n−1∑

i=1

∂φi(ω)

∂ω

∣∣∣∣
T

e(1)

)
ω′(1) (5.45)

= −(a+ (n− 2)b, . . . , a+ (n− 2)b)




− 1
n−1
...

− 1
n−1



 (5.46)

= a+ (n− 2)b (5.47)

5For any v ∈ R the expression vi means [v]i
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as (5.47) equals λ1 + 1 we have

h′(1) < 1⇒ λ1 < 0⇒ λ2 < 0

which concludes the proof.
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Chapter 6

Applications to the evolution of
language

6.1 Introduction

As already mentioned in the introduction, the topic of this dissertation was
inspired by the research on the origins of language. More precisely, it is the
framework of language games (see e.g. Steels (1998)) from which we borrowed
most of our assumptions. This framework contrasts with other approaches for
studying the evolution of language mainly by its horizontal transmission model,
as was discussed in section 2.3.2.

In this chapter, we return to this research field and investigate how our
general framework of convention evolution applies to the problem of language
evolution in artificial agents. We will focus on the naming game, which is
a particular and relatively simple type of language game in which agents use
proper names to refer to objects. Many update schemes have been described for
the naming game in the literature, sometimes as a subsystem of a larger whole
(Steels and Kaplan, 1998). Surprisingly, even in this relatively simple setting,
for many update schemes which have been described in the literature and which
seem very reasonable at first sight, a systematic analysis within our framework
will show that convergence to a successful language is not at all guaranteed.
That is, in each of these cases we will show the existence of suboptimal but
stable equilibria in which the population can get trapped.

6.2 The naming game

The naming game is one of the first and most basic language games. It studies
whether and how a population of agents can agree on giving proper names to

133
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a given set of objects. In fact, using the term ‘the naming game’ is slightly
misleading as there exist multiple variants which differ in the precise assump-
tions that are made. In section 6.2.1 we provide a general description which
is common among all variants of the naming game. Also, in section 6.2.2 we
describe what an agent typically looks like in the literature on naming/language
games. Next, we refine our description of the naming game which results in two
different settings. These are discussed in section 6.3 and section 6.4 in turn.

6.2.1 Problem description

In the following, we will use the terminology introduced in Chapter 2 as much
as possible.

The global interaction model is used and two agents interact by playing a
naming game.1 In other words, subsequent naming games are played between
two randomly chosen agents from the population. The roles I and II are referred
to as the speaker and the hearer.

During a naming game, the speaker and hearer are situated in the same
environment which contains a number of different objects. The speaker chooses
one of the objects to be the topic, at random. If he does not have a word for
that object yet, he invents one, otherwise he chooses between one of the names
he knows for the topic according to some rules. Based on this name, the hearer
guesses what the topic is, which determines whether the game is successful or
not. In case of failure the speaker may or may not point at the topic.

In this framework, we refer to the way an agent—acting as speaker and
hearer— associates words with objects, as its language. The question then arises
under what circumstances the agents will end up using the same language and
whether this resulting language is effective and efficient. A language is effective
if one can play successful naming games with it. This requires that every object
is associated with at least one word which identifies it unambiguously, or in
other words, homonyms should not occur. A language is efficient if no more
words are used than necessary. This means that synonyms should not occur.
Altogether, an effective, efficient language associates one unique word with each
object.

6.2.2 Agent representation and update strategies

An agent’s internal state is typically represented as a lexicon, containing asso-
ciations between words and objects (see e.g. Steels (2001)). More precisely, the

1We use the term ‘naming game’ to refer to the whole model as well as to the actual game
played between two agents.
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lexicon contains a set of object/word pairs together with a number representing
the strength of the association. Suppose we denote the set of all possible words
with W and the set of objects with O, this then takes the form

{< o1, w1, s1 >,< o2, w2, s2 >, . . . , < ok, wk, sk >} (6.1)

with o1, . . . , ok ∈ O, w1, . . . , wk ∈ W and s1, . . . , sk ∈ [0, 1]. The o’s and w’s are
not necessarily different, but every element from O ×W appears at most once.

Suppose now that an agent participates in a game as a speaker and has to
give a name to the topic, t. He then looks up all tuples with t in the object-slot.
If no such tuples exist, he invents a new word, say w, adds the tuple < t,w, η >
to its inventory (η being the initial association strength) and utters the word
w. In the other case, the agent picks from the selected tuples the one with the
highest strength and utters the corresponding word.

Similarly, if an agent has the role of hearer and hears a word w, he then
looks up all tuples with w in the word-slot. From these tuples the agent picks
the one with the highest strength and interprets the word as referring to the
corresponding object. If no such tuples exist, the game fails. In a setup in which
the speaker then points at the topic, say t, the hearer adds the tuple < t,w, η >
to its lexicon. If the speaker does not point, this requires a slightly different
setup which is discussed in section 6.4.

After the game, the agents can update their lexicons, i.e. change the strengths
of the associations, according to the information they gained during the game.
Many different schema have been proposed in the literature to perform these
updates. It will turn out that the performance of the agents is very sensitive
to the precise update mechanism used and that some schema, which initially
appear reasonable, contain serious pitfalls.

After a successful game such an update typically involves strengthening the
used association and weakening competing associations. In principle, this could
be performed by either the hearer alone, both the speaker and hearer or only by
the speaker. The latter is however never used. Which tuples are considered as
competing, varies across models and can also differ between speaker and hearer.
These could be (i) all tuples with the same object but different word, (ii) all
tuples with the same word but different object or (iii) both. If (ii) is used this
is mostly by the hearer. At all times, the association strength between a word
and a meaning is kept between 0 and 1. In some models, when an association’s
strength drops to 0, it is removed from the lexicon, which also implies that the
corresponding word will not be recognized anymore in future games.
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6.3 Naming game without homonymy

6.3.1 Refined problem description

Let us assume that the speaker always points at the topic if the game fails.
Moreover, we suppose that number of available words is unlimited, so that the
chance two independently invented words are the same, is negligible. In this
case, there is no way homonymy can arise. In other words, it will never happen
that one name is associated with more than one object within an agent nor
across agents.

Indeed, in the beginning, no agent knows a word for any object. If and only
if an agent has the role of speaker and has to talk about an object he does not
have a word for yet, he invents a new word. This word will be different from
all other words already present in the population. Furthermore, when an agent,
acting as hearer, hears a word he does not know, he waits until the speaker
points at the topic to decide with which object he will associate that word.
This implies that the sets of words used for the different objects are disjoint
and that homonyms will not occur.

In the absence of homonyms, the dynamics of the synonyms used for each
object are independent. Moreover, as we assume no bias in the objects, these
dynamics are identical. As a result, it suffices to study the dynamics of the
synonyms used for only one object. This is how we proceed in this section.

The absence of homonymy reduces the possible courses of the game. If the
hearer knows the word uttered by the speaker, it can only be associated with
one object, which is then necessarily the topic. Hence the game can never fail
by the hearer making a wrong guess, only by the hearer not knowing the word.

6.3.2 Simplified agent representation

In the absence of homonyms, in an agent’s lexicon, each object has its own set
of words independent from the others. As we consider only one object, we can
represent an agent’s lexicon as a set of words with a strength (all associated to
the object considered).

We now consider the following class of agents. After a successful game, the
hearer and speaker increase the strength of the used word with respectively ∆+

h

and ∆+
s . All synonym strengths are decreased with respectively ∆−

h and ∆−
s .

In case of failure, the hearer adds the used word to its lexicon with the initial
strength η and the speaker decreases the strength of the used association with
∆−
s
∗
. If the score of a word becomes 0, the word is removed from the lexicon.

We further refer to this type of agent as agent NGnH (Naming Game no
Homonymy).
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6.3.3 Relation to convention problems

It is clear that the difference between the naming game, as currently described,
and the type of convention problems we encountered before, is the fact that the
set of alternatives (words) is not fixed beforehand. Instead, words are created on
the fly during the interactions of the agents. In Appendix C we provide estimates
of various quantities related to this process of word creation and spreading in
the naming game.

Fortunately, this difference does not mean that the framework we developed
in chapters 2 and 3 cannot be applied. In section 6.3.4 we will show that new
words are only introduced up to a certain point in time. From that moment
on, the dynamics only involve the symmetry breaking between the available
alternatives, a process similar to the kind of convention problems we studied
before.

In section 6.3.5 we determine the relevant behavior space for the convention
problem defined by the naming game. We then show in section 6.3.6 that the
NGnH-agent is ergodic so that its response function is well-defined. We also
investigate under what conditions the agent is sufficiently adaptive so that the
equilibrium distribution over the states is reached fast enough. At that point
we will encounter the first problems that may arise when updating a speaker.

Subsequently, in section 6.3.7 we investigate under what parameter settings
the response function is amplifying. If this is the case, the population will
never get stuck in a suboptimal behavior and the agents will always succeed in
establishing a language without synonyms.

6.3.4 Word creation

In Appendices C.1 and C.2 is shown that if agents never invent a new word for an
object if they already encountered one, the number of words created is limited.
On average N#O

2
words will be created, with N the population size and O the

set of objects. Strictly speaking, this property does not hold for the NGnH-
agent if ∆−

s
∗
> 0 as the following example shows, with η = 0.5 and ∆−

s
∗

= 0.1.
Suppose that an agent a has to speak about a certain object, o, for the first
time. He invents a word, say w, and adds the tuple < o,w, 0.5 > to its lexicon.
Inevitably the game will fail, as the hearer could not have known the word yet,
and the score will drop to 0.4. Now suppose that in the subsequent four games
about o in which this agent participates, he happens to be the speaker. If the
population is not very small, it is unlikely that a will play twice against the
same agent in this period. Hence these next four games, in which the agent uses
word w to describe object o, will also fail, bringing w’s score to 0 and causing
the word (i.e. its tuple) to be removed from the agents’ lexicon. If agent a then
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has to speak about the object o once again, he will invent a new word.
If on the other hand ∆−

s
∗

= 0, then once an agent has at least one association
for a certain object, the strengths of all associations for that object can never
reach zero simultaneously and a new word will never be created.

Having said that, the case ∆−
s
∗
> 0 is far from problematic. For each

agent the described scenario of repeated failures as speaker takes place with
probability p = 2−η/∆

−
s

∗

or 1/32 in the given example.2 So on average each
agent will create 1/(1 − p) words for each object, through the process of only
being speaker in games about a certain object. Of course it is also possible
that an agent ends up with an empty lexicon for a certain object even if he
has not been exclusively speaker. Yet every time an agent is hearer, either a
new association with strength η enters its lexicon or the strength of an existing
association is increased. Because the introduction of a new word requires all
strengths to become zero, we can safely state that as the games between the
agents proceed, the chance for any agent to end up with an empty lexicon for
any object becomes negligible.

6.3.5 Behavior space

In order to apply our framework, we need to determine the behavior space that
corresponds with the variant of the naming game at hand. Suppose a population
has reached a state from which onwards no new words will be created anymore.
Let W be the finite set of all words ever created and n = #W . We distinguish
two cases.

(hearer) Suppose only the hearer updates its lexicon after a game, i.e. ∆+
s =

∆−
s = ∆−

s
∗

= 0. In this case the success or failure of a game does not
alter the information gained by the hearer. Hence we could interpret an
interaction as if the speaker simultaneously points at an object and utters
a word. The hearer thus learns the speaker’s preferred way to name that
object. This process is equivalent to the multiple convention problem
(CP2). The behavior space is thus also B = Σn (in case of one object).
A behavior σ ∈ Σ specifies the frequencies with which the different words
in W are used in the population.

(hearer+speaker) If both hearer and speaker update their lexicon after a
game, the information gained by the hearer is the same as in the previous
case. However, also the speaker is influenced in this type of interaction; its
updates depend on whether the game was successful or not. The success
of a game depends on the fact whether the hearer knows the uttered word

2An agent needs to be η/∆−

s

∗
times speaker in order to bring the score η to 0.
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or not. Hence the behavior must also specify with which probabilities the
words in W are known, which is an element in [0, 1]n. The behavior space
is then B = Σn × [0, 1]n.

6.3.6 Ergodicity and adaptivity

In general, the state space Q of the NGnH-agent, even with a limited set of
words, is not finite. But similar to our reasoning for the ∆-agent introduced
in section 4.1.1, we can state that if the ratios between the ∆’s governing the
changes in the scores are rational numbers, these scores can only attain a finite
number of values. The state space then also becomes finite.

For an agent with finite state space to be ergodic, it is sufficient that at
least one state can be reached from all other states through a finite sequence
of interactions. This is obviously the case for the NGnH-agent—except for
pathological choices for the parameters (e.g. all zero)—as a repeated hearing of
the same word will make that word’s score 1 and the others’ 0, whatever the
initial state was.

We now explore the adaptivity of ∆-agent in the context of a fixed population
behavior. We consider two cases in turn, one in which only the hearer updates
after a game and one in which both speaker and hearer update.

Hearer update

If an agent only updates as a hearer, i.e. ∆+
s = ∆−

s = ∆−
s
∗

= 0 then only the
speaking behavior σ ∈ Σn of the population is relevant. The elements of σ are
the relative frequencies with which the words wi, 1 ≤ i ≤ n are spoken. In this
case the NGnH-agent strongly resembles the ∆-agent introduced in section 4.1.1
for CP2, but is not identical to it. The two agents behave differently if the score
of a word first becomes 0 and is observed again thereafter. The NGnH-agent
will have deleted the word and thus will give it the score η. The ∆-agent will
just increase the current score of the word (0) by ∆+.

We now consider the symmetrical case σi = 1/n for all i. An agent is
characterized fully by its association strengths for each of the words wi, say si.
As explained in section 6.3.4, the si will never become simultaneously 0 so that
the agent will never create a new word. For a moment we assume that the si
lay far enough from the borders 0 and 1, such that we can ignore truncation.
The expected change after a game in the association strength si is then given
by

E[∆si] =
1

2
(
1

n
∆+
h −

n− 1

n
∆−
h ) (6.2)

Hence depending on the sign of ∆+
h − (n− 1)∆−

h , si will on average increase,
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decrease, or stay the same, if not near the borders of the region [0, 1]. We
consider these three cases in turn. For simplicity we only explain the case of
n = 2 words. For n > 2 the results are qualitatively similar. In all cases we
have η = 0.5.

First, if ∆+
h −∆−

h > 0, E[∆si] > 0 and s1 and s2 will fluctuate close to 1, as
is shown in figure 6.1(a) for ∆+

h = 0.1 and ∆−
h = 0.05. The agent traverses its

state space relatively smoothly because if a strength deviates from 1, it is driven
back to it by a positive average change. The agent therefore switches regularly
between w1 and w2 and the agent will respond fast to a changing population
behavior.

Second, in the case of ∆+
h − ∆−

h < 0, s1 and s2 will be closer to 0. The
strengths will however not be as close to 0 as they were to 1 in the previous
case. This is because once a strength reaches the lower bound 0, the next time
the agent hears the corresponding word, its strength will immediately raise to η,
a phenomenon which does not have an equivalent for the upper bound. Figure
6.1 shows the evolution of the agent’s state for ∆+

h = 0.05 and ∆−
h = 0.1.3 Again

the agent switches regularly between w1 and w2.

Finally, we consider the case ∆+
h = ∆−

h . We then have E[∆s1] = E[∆s2] = 0.
Hence the changes in s1 and s2 are not biased in the upper or lower direc-
tion and the trajectory described, resembles a bounded random walk. Unlike a
standard bounded random walk, however, a strength which reaches the lower
bound 0 will jump directly to a value of η during one of the subsequent interac-
tions.Figures 6.1(c) and 6.1(d) show the evolution of s1 and s2 in respectively
the cases ∆+

h = ∆−
h = 0.1 and ∆+

h = ∆−
h = 0.05. We observe a slight decrease

in responsiveness compared to the previous cases, with longer periods of un-
changed word preference. This effect becomes stronger with smaller steps ∆+

h

and ∆−
h .

We can conclude that an agent which updates only as a hearer is sufficiently
responsive, with a better responsiveness if the word scores are driven either to
1 or 0. An intuitive explanation for this fact is that a bias in the score towards
the upper or lower border of the region [0, 1] provides a compensating ‘force’
for a score deviating from that border. This keeps all scores relatively close to
each other (under a symmetrical population behavior) with as a result a fast,
random switching of the score which is maximal.

3Please note that, as the graphs show moving averages, the actual values of s1 and s2 can
be 0, causing a resetting to η while the shown values are not. For comparison, figure 6.2 shows
the actual values, albeit in another setting.
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Figure 6.1: The evolution over time of the state (s1,s2) of an agent which
interacts with a population in which only two words, w1 and
w2, are left. In all cases σ1 = σ2 = 1/2. The black-white bar
above each graph shows the evolution of the word preference.
For clearness all graphs show a moving average over 20 games.
This means that s1 or s2 can be 0 while the plotted value is
not.
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Hearer and speaker update

We now turn to the general case in which both the hearer and speaker update
after a game. The analysis will show that even in the simplest case of one object
for which only two words w1 and w2 are left, updating a speaker can give rise to
a loss of adaptivity of the agent. The behavior of the population is characterized
by the production behavior σ ∈ Σ2 and the acceptance rates ρ ∈ [0, 1]2 with ρi
the probability that word wi is understood by an agent, or in other words that
a game is successful using wi. While, in principle, it is possible that the agent
at some point creates a new word when subject to this behavior for a long time,
this can be ignored for all practical purposes. We can therefore safely assume
that an agent is characterized fully by its two association strengths for w1 and
w2: s1 and s2.

4 We now investigate the evolution in time of these strengths.
Similarly to (6.2), we assume for a moment that s1 and s2 lay far enough from
the borders 0 and 1 such that we can ignore clipping effects. Without loss of
generality we take s1 > s2 which implies that the agent will use w1 when being
speaker in a game. The expected change in s1 and s2 after one game then takes
the following form:

E[∆s1] =
1

2

(
ρ1∆

+
s − (1− ρ1)∆

−
s
∗)

︸ ︷︷ ︸
speaker

+
1

2

(
σ1∆

+
h − σ2∆

−
h

)
︸ ︷︷ ︸

hearer

(6.3)

E[∆s2] =
1

2

(
−ρ1∆

−
s

)
︸ ︷︷ ︸

speaker

+
1

2

(
σ2∆

+
h − σ1∆

−
h

)
︸ ︷︷ ︸

hearer

(6.4)

The problem that can arise, as is apparent from (6.3) and (6.4) is that the
agent would sustain the difference in s1 and s2 through a positive feedback loop
when being speaker, irrespective of small variations in σ and ρ. We consider
the symmetrical case σ1 = σ2 = 1/2 and ρ1 = ρ2 again. We then expect a loss
of responsiveness if E[∆s1] > 0 and at the same time E[∆s2] < 0 for s1 > s2.
From (6.3) and (6.4) we derive, with δ = (∆+

h −∆−
h )/2,

E[∆s1] > 0 ⇔ ρ1∆
+
s − (1− ρ1)∆

−
s
∗
> −δ (6.5)

E[∆s2] < 0 ⇔ ρ1∆
−
s > δ (6.6)

The conditions on the right hand side are for example fulfilled if we make all
parameters equal: ∆+

s = ∆−
s = ∆−

s
∗

= ∆+
h = ∆−

h = ∆ > 0. Indeed, then δ = 0
such that (6.6) follows immediately. Regarding (6.5), an agent which prefers w1

will always understand w1, but also a considerable fraction of agents preferring

4An agent would create a new word when being speaker in a game while s1 and s2 are
simultaneously 0.



6.3. NAMING GAME WITHOUT HOMONYMY 143

w2 understand w1, such that ρ1 > σ1 = 1/2 and the condition will also hold.
As the derivation for s1 < s2 is completely analogous, this essentially implies
that a strength being the highest or the lowest will be reinforced through the
updating mechanism.

Figures 6.1(e) and 6.1(f) show the evolution of the agent’s state with η = 0.5
and respectively ∆ = 0.1 and ∆ = 0.05. The speaking behavior is σ = (0.5, 0.5).
The acceptance rates of the population, ρ1 (and ρ2, but is not used), had to
be chosen such that, together with σ, they form a fixed point of the response
function. In other words, ρ must be chosen such that an agent exposed to
the behavior 〈σ, ρ〉 would understand w1 and w2 also with probability ρ1 and
ρ2. As we do not have the response function in analytic form, the fixed point
was found by numerical approximation and yielded ρ1 = 0.88 and ρ1 = 0.93
for respectively ∆ = 0.1 and ∆ = 0.05. As we expected, the graphs show the
existence of two metastable regions in the state space, one for s1 high and s2 low
and vice versa. Due to the randomness of the interactions, transitions between
these regions are possible (which also follows from the agent being ergodic), but
their probability decreases when the step size ∆ becomes smaller. Yet even for
a typical value of ∆ = 0.1 the graphs show long periods of unchanged word
preference.

Our findings are also confirmed by a calculation of the spectral gap of the
Markov chain in each of the six cases, as shown in table 6.1. After all, this
quantity is a good measure of the adaptivity (ergodicity) of a Markov chain.

Figure 6.2 shows a more detailed, non-averaged evolution of s1 and s2 in
the case ∆ = 0.05. One clearly observes a repeated steady descent of s1 to 0
followed by a reset to η = 0.5. This indicates that decreasing η is not a solution
to the problem as it can only diminish the chance to switch between the two
regions. The figure also provides a visual interpretation for the hearing behavior
ρ1 = ρ2 = 0.93: it is the average fraction of time a score is not 0. Within each
phase between a transition from one metastable region to another, the lowest
score will then be zero approximately 14% (= 2(1− 0.93)) of the time.

The existence of metastable regions at the agent level does not necessarily
mean that the induced response function is not amplifying. This response is
however defined as the average behavior of the agent on an infinite time inter-
val. The agent not being adaptive thus means that it can take a long time before
an agent on average exhibits its theoretical response. For example, suppose a
population of agents of the type used in figure 6.1(e) or (f) is equally divided
between agents preferring w1 and those preferring w2. In other words, half of
the population is in the metastable region s1 > s2 and the other half in the
region s2 > s1. We then have for the population behavior σ = (1/2, 1/2) and
a certain symmetrical hearing behavior ρ. Now assume that for some reason, a
small fraction of agents switches from w2 to w1 preference. This causes a small
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setting spectral gap (10−2)

a)
∆+
h = 0.1

∆−
h = 0.05

4.222

b)
∆+
h = 0.05

∆−
h = 0.1

3.686

c)
∆+
h = 0.1

∆−
h = 0.1

3.015

d)
∆+
h = 0.05

∆−
h = 0.05

0.682

e)
∆ = 0.1
ρ1 = 0.88

0.627

f)
∆ = 0.05
ρ1 = 0.93

0.026

Table 6.1: The spectral gap of the markov chain on the state space of the
NGnH-agent, induced by a population behavior σ = (0.5, 0.5)
and ρ as shown (if applicable), for six different settings.
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Figure 6.2: The evolution of s1 and s2 for an agent with ∆ = 0.05 when
interacting with a population with speaking behavior σ1 = σ2 =
1/2 and hearing behavior ρ1 = ρ2 = 0.88. Unlike in figure 6.1,
the graphs show the actual values of s1 and s2.



6.3. NAMING GAME WITHOUT HOMONYMY 145

change in the population speaking behavior to σ′ with (σ′
1, σ

′
2) = (1/2+ǫ, 1/2−ǫ)

and in the hearing behavior to ρ′ of which the precise form is unimportant for
the following. Because E[∆s1] and E[∆s1] depend continuously5 on σ and ρ,
as can be seen from (6.5) and (6.6), such a small change will not alter their
sign. Consequently the metastable character of the two regions will not qualita-
tively change, only the (small) transition probabilities between the regions will
become asymmetrical (potentially causing an amplification in the equilibrium
distribution). Therefore it can take a long time before the agents preferring w2

respond to this change in the population behavior and also switch to w1.

The underlying reason for this undesirable behavior is that the speaker treats
a successful game the same way as the hearer does, although he gains less
information. In a game, be it successful or not, the hearer always learns the
name the speaker prefers to describe the topic. The speaker, however, only
learns whether the hearer understood the word, not whether the hearer himself
would use that word to describe this object. Moreover, once the population
reaches a phase where only a choice between a few words is left, most agents
will have these words in their lexicons and the games will be successful most of
the time, as is apparent from the estimated word acceptance rates ρ1 = ρ2 ≈ 0.9
in the given examples. Hence the information the speaker hereby gains is of
little value. Therefore when designing an agent, it is important to keep in mind
this asymmetry in the information transmitted between the speaker and the
hearer and in particular one should be careful when strengthening a speaker’s
association after a successful game. While it might initially speed up the process
of reducing the number of words in the population, it can trap the agents in a
metastable, suboptimal state once only a few words remain and the games start
to succeed most of the time.

6.3.7 Amplification

In the previous section we have shown that the NGnH-agent is ergodic and if
he only updates as a hearer, he is also sufficiently adaptive. We write *NGnH-
agent for the subclass of NGnH-agents with no speaker updates, i.e. with ∆+

s =
∆−
s = ∆−

s
∗

= 0. We will now investigate whether the corresponding response
function for the *NGnH-agent is amplifying, so that stable suboptimal equilibria
are excluded.

We already mentioned that the *NGnH-agent resembles the ∆-agent for
which we proved in Chapter 4 that it solves CP1 and highly probably also CP2.
Consequently we expect the *NGnH-agent not to perform too different under
‘normal’ choices for its parameters. This turns out to be the case. Figure 6.3

5In the mathematical sense.
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φ(p)

∆+
h = ∆−

h = 0.1

∆+
h = 0.01 ∆−

h = 0.1

Figure 6.3: The reponse function of the *NGnH-agent for two different pa-
rameter settings. In all cases η = 0.5. In the case ∆+

h = 0.01
the response function has 5 fixed points. From the derivatives in
these points we learn that the response system has three stable
equilibria: 0, 0.5 and 1 and two intermediate unstable ones.

shows the response function of the *NGnH-agent for ∆+
h = ∆−

h = 0.1.
Just as a minor remark, unlike the ∆-agent for which ∆+ + ∆− < 1 was

sufficient to have amplification, not all the values of ∆+
h and ∆−

h produce an
amplifying response function. One has to make rather peculiar choices for these
parameters, however, to observe this. For instance for ∆+

h = 0.01 and ∆−
h = 0.1

(and η = 0.5), amplification is lost as is also shown in figure 6.3.

6.4 Naming game with homonymy

In section 6.3.1 two assumptions were made which guaranteed that homonyms
would not arise in the naming game: the speaker always points at the topic if the
hearer does not know the word and the number of available words is practically
unlimited. If either of these two assumptions is dropped, homonymy enters the
scene.A population of agents then faces the task of naming a set of objects using
only a limited number of words. If only the hearer updates after an interaction
and if the speaker always points at the topic, this problem equals the labeling
problem as defined in section 2.5.

In the literature, various models have been proposed to deal with this prob-
lem. We will analyze three of these models in turn. In the first case (Kaplan,
2005), a stability analysis of the fixed points of the response function will show
that the population will always converge to an optimal language, i.e. without
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synonyms and homonyms. This is in agreement with the findings in the original
publication. Yet, for the two other models (Lenaerts et al., 2005; Oliphant and
Batali, 1997) it will turn out that the response function has suboptimal but
stable fixed points. This implies that there are suboptimal areas in the system-
level state space from which a sufficiently large population will never6 escape.
This phenomenon went unnoticed in the respective publications, one of which
the current author was one of the contributors.

6.4.1 Case 1

The first model we consider is a slight adaptation of one of the models for
distributed coordination proposed in Kaplan (2005). The problem description
corresponds exactly to the labeling problem: m = #O objects must be uniquely
named using words from a collection of n = #W (≥ m) available words. During
a game, the speaker reveals the name he prefers for the randomly chosen topic.
The behavior space is thus B = (Σn)

m. We will also refer to an element from
B as a production matrix, because it describes with which probabilities the
different names are produced for the different objects.

Let the set of objects be O = {o1, . . . om} and the set of available words
W = {w1, . . . , wn}. The agent’s state is an m × n matrix L which contains
association strengths between objects and words. These strengths always lie
between 0 and 1. Such a matrix is also called an association or lexical matrix
(see e.g. Komarova and Nowak (2001)). After a game in which the hearer
observed the object oi expressed as wj, he updates its lexical matrix as follows:7

L ← (L+Dij) ↓↑10 (6.7)

with

Dij =





−γ
...

−γ
−γ ··· −γ γ −γ ··· −γ

−γ
...

−γ




(6.8)

where the only positive γ appears in the ith row and jth column. Values not
shown in (6.8) are 0. The strength of the used association is enforced and
strengths of competing synonyms (on the same row) and homonyms (on the
same column) are inhibited.

When expressing object oi, the agent chooses the word with the highest
strength in row i. If there are multiple candidates, one is selected at ran-
dom. The interpretation of a word is analogous. A similar reasoning as for the

6For all practical purposes
7The expression x ↓↑ba means x clipped between a and b: (x ↑a) ↓b.
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*NGnH-agent shows that we are dealing again with an ergodic agent with a
well-defined response function.

Now consider the particular case of three objects and three words, with
γ = 0.1. As an example of the response of an agent to a behavior P ∈ (Σ3)

3

P =




0.4 0.3 0.3
0.5 0.25 0.25
0.25 0.5 0.25



 φ(P ) ≈




0.37 0.23 0.4
0.67 0.13 0.2
0.11 0.76 0.13



 (6.9)

in which we can observe an amplification of the values P2,1 and P3,2 and the
beginning of the resolution of the conflict between the o1 and o2 through the
increase of P1,3.

The production matrices which associate each meaning with a different word
are obviously stable fixed points. We will not exhaustively analyze all other pos-
sible fixed points, but focus on one particular symmetry where the production
matrix is of the form: 


a a b
a a b
c c d



 (6.10)

with 2a+ b = 1 and 2c+ d = 1. There turn out to be three fixed points of this
form:8

P (1) =




1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



 (6.11)

P (2) =




0.5− 0.5− 0+

0.5− 0.5− 0+

0+ 0+ 1−



 (6.12)

P (3) =




0+ 0+ 1−

0+ 0+ 1−

0.5− 0.5− 0+



 (6.13)

P (1) is the fixed point which is necessarily present in all symmetrical agents, i.e.
with no prior preference in objects and words.

All three fixed points turn out to be unstable. For example in figure 6.4
a projection of the evolution of the system is shown using equations (3.43)
and (3.44), starting from the fixed point P (3). All trajectories escape from the
suboptimal, unstable equilibrium and converge towards an optimal behavior.

8The +/- signs in P (2) and P (3) indicate that the real fixed points are slightly shifted in
that direction.
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Figure 6.4: The escape from the unstable fixed point P (3) using the differ-
ence equations (3.43) and (3.44), with β = 0.001 and b(0) =
P (3). The horizontal axis shows the difference between the ini-
tially equal values b(i)3,1 and b(i)3,2, the vertical axis shows the
difference between the initially equal values b(i)1,3 and b(i)2,3.
20 trajectories are shown for i up to 5000.

6.4.2 Case 2

We now turn our attention to a model in which both the hearer and speaker
update their internal states after a game. Several similar agent architectures
of this type were introduced in the literature, e.g. in Steels (1996); de Jong
and Steels (2003); Lenaerts et al. (2005); Lenaerts and De Vylder (2005). We
consider the particular case of Lenaerts et al. (2005), whereby an agent makes
use of a lexical matrix and produces and interprets as in the previous example.

If the speaker also updates its lexical matrix, the behavior space not only
consist of the production behavior but also of the interpretation behavior. An
interpretation behavior describes, for each word w and object o, the probability
that w is interpreted as o. An interpretation behavior is thus a matrix in
(Σm)n.9 The behavior space is then B = (Σn)

m × (Σm)n. An element b ∈ B
is written as b = 〈P,Q〉. The production and interpretation matrices P and Q
have also been called the transmission and reception matrix (Hurford, 1989), the
active and passive matrix (Nowak et al., 1999) or the send and receive functions
(Oliphant and Batali, 1997).

Apart from the fact that the speaker also updates its lexical matrix after
a game, another difference with the previous case is that the speaker does not

9Unlike the production matrix which is a row stochastic matrix, we will represent an
interpretation matrix as a column stochastic matrix.
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point at the topic. In other words, if the game fails, the hearer does not learn
which object the speaker had in mind.

The way in which the lexical matrix is updated, depends both on the role
of the agent and on whether the game was successful or not. Consider a game
where the speaker has to name object oi and therefore uses word wj, which the
hearer interprets again as object oi′ . Only if oi = oi′ the game is successful. In
this case the speaker increases the score of the used association (oi, wj) with γ
and decreases the scores of competing words for the same meaning with γ

n−1
.

The hearer also increases the score of (oi′ , wj) = (oi, wj) with γ and decreases
competing associations of the same word with other objects with γ

m−1
. If the

game fails, the opposite changes are performed, i.e. the speaker decreases (oi, wj)
and increases the strengths of synonyms, while the hearer decreases (oi′ , wj) and
increases the strengths of homonyms. The intended object oi is thus not taken
into account for the hearer update. The association strengths are always kept
between 0 and 1.

As an example of the response of an agent to a behavior 〈P,Q〉 ∈ B we have,
with m = n = 3 and γ = 0.1:

〈P,Q〉 =

〈


0.6 0.2 0.2
0.25 0.5 0.25
0.3 0.3 0.4



 ,




0.15 0.1 0.6
0.7 0.1 0.2
0.15 0.8 0.2




〉

(6.14)

that

φ(〈P,Q〉) ≈
〈


0.37 0.29 0.34
0.68 0.18 0.14
0.03 0.94 0.03



 ,




0.44 0.11 0.71
0.53 0.05 0.18
0.03 0.84 0.11




〉

(6.15)

One can observe that the different associations compete with each other in a
non-trivial way.

Concerning the fixed points of agent response function, we first reconsider
the casem = n = 3 and search for behaviors with particular symmetries, namely
behaviors of the form

〈


a a b
a a b
c c d



 ,




e e f
e e f
g g h




〉

(6.16)

with 2a+ b = 1, 2c+ d = 1, 2e+ g = 1 and 2f + h = 1. Apart from the totally
symmetrical behavior (a = b = c = d = e = f = g = h = 1/3), there are two
other fixed points:
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b(4) =

〈


0.5− 0.5− 0+

0.5− 0.5− 0+

0+ 0+ 1−



 ,




0.5− 0.5− 0+

0.5− 0.5− 0+

0+ 0+ 1−




〉

(6.17)

b(5) =

〈


0+ 0+ 1−

0+ 0+ 1−

0.5− 0.5− 0+



 ,




0+ 0+ 0.5−

0+ 0+ 0.5−

1− 1− 0+




〉

(6.18)

Again analysis using equations (3.43) and (3.44) showed that both fixed points
are unstable.

So far this agent seems to perform quite well. Yet, if we increase the number
of available words, the problem with this agent becomes apparent.

Let us take n = 11. The number of objects m is irrelevant, as long as
m ≤ n − 1. Suppose further that the agents have reached a state in which all
but one object have a unique name. Without loss of generality we can assume
it to be o1. We further assume that for o1 only two synonyms are left10, w1

and w2, which are roughly used equally often. Concretely, with e.g. m = 5 this
means that all agents have a lexical matrix of the form (or some permutation
of its rows and columns):





s1 s2 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0




(6.19)

with s1 and s2 the strengths between o1 and w1 and w2 respectively.
Games with a topic different from o1 will always be successful but do not

alter the lexical matrix of speaker nor hearer. So in the following, if we refer to
a game we mean a game in which o1 is the topic.

If both s1 > 0 and s2 > 0 for each agent, games will always be successful.
This means that each time an agent is hearer, either s1 or s2 will be increased
with γ. Other values in the same column should be decreased with γ

m−1
, but

are already 0. If an agent is speaker he will increase the used association with
γ and decrease the other associations with γ

n−1
= γ/10. This shows that s1 and

s2—if not yet equal to 1—will increase most of the time and if they decrease,
it is only with a relatively small amount. So s1 and s2 will be typically close to
1. Suppose now s1 > s2. The only scenario in which s2 can become 0, is one
in which the agent is repeatedly speaker for approximately γ

n−1
games. With

10There are only two words with a score > 0.
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Figure 6.5: The response function of an agent which dampens synonyms as
a speaker and homonyms as a hearer. The reduced behavior
space is the probability that one of two remaining synonyms
are use for a certain object.

γ = 0.1 and n = 11 this means 100 games. Because the chance the agent is
speaker is 1/2, the mentioned course of events will, for all practical purposes,
never occur. This means that the population is trapped in this suboptimal
subset of the state space.

We can also draw the same conclusion based on the response function. The
only element in the population behavior (consisting of a production and inter-
pretation behavior) which can fluctuate starting from the aforementioned initial
state, is the probability with which the words w1 and w2 are produced for o1.
So we can summarize the behavior by a scalar p ∈ [0, 1] which is the frequency
of w1 being used for o1. The response of an agent to p is then the fraction of the
time s1 > s2 in the agent’s lexical matrix when being subject to this behavior.
Figure 6.5 shows this response function in the case n = 11 and γ = 0.1. The
stability of p = 0.5 confirms our previous findings.

Finally, we verify that this stable equilibrium indeed precludes the popu-
lation to converge to an optimal language in the original stochastic system.
Figure 6.6 shows the evolution of the population behavior p for a population
of 100 agents with an initial lexical matrix as given in (6.19) with s1 = s2 = 1
with the same settings as before. As a reference experiment also the evolution
of the model described in the previous section is shown. The initial conditions
are exactly the same in both cases.

To conclude, the roots of this problem to reach an optimal language, lie
partly in the fact that the damping of synonyms is only done by the speaker,
and also in the fact that the extent to which synonyms are inhibited, decreases
with the number of words.
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Figure 6.6: The evolution of the population behavior in case of 100 agents
starting with a lexical matrix (6.19) for the models described
in section 6.4.1 and 6.4.2, for 5 independent runs in each case.

6.4.3 Case 3

As a last model, we consider an agent architecture which has been described
in Hurford (1989) and later on in Oliphant and Batali (1997) and was dubbed
‘calculator’ and ‘obverter’ respectively. The main idea is that an agent calculates
the best response to an estimate of the production and interpretation behavior
of the population.

The further specification of this agent is easiest using the following measure
of a production and interpretation matrix P and Q: The communicative accu-
racy is probability that the word for a randomly chosen object is interpreted
again as that object (see Hurford (1989); Nowak and Krakauer (1999); Oliphant
and Batali (1997) for similar measures):

ca(P,Q) =
1

m

m∑

i=1

n∑

j=1

Pi,jQi,j. (6.20)

Now, suppose the population has the behavior 〈P,Q〉 and the agent has an

estimate of this
〈
P̂ , Q̂

〉
. The agent then constructs a production matrix P ′

based on Q̂ and an interpretation matrix Q′ based on P̂ such that ca(P ′, Q̂) and
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ca(P̂ , Q′) are maximal. For example we have

Q̂ =




0.2 0.4 0.5
0.3 0.2 0.2
0.5 0.4 0.3



 P ′ =




0 0 1
1 0 0
1 0 0



 (6.21)

In Hurford (1989) and Oliphant and Batali (1997) the matrices P̂ and Q̂ are
constructed from a fixed number of samples of P and Q. In order to fit this into
the language game framework, we let an agent remember the last k words used
for each meaning and for each word its last k interpretations. These samples
determine the estimates P̂ and Q̂.

With regard to the agent response function, under the same symmetry re-
strictions as in (6.16), we observe approximately the same fixed points b(4) and
b(5). But, unlike the previous case, the equilibrium behavior b(5) turns out to be
stable for larger values of k. To proof this, we performed a linear stability anal-
ysis for different values of k. For each k, we first computed the agent response
function φ analytically. We then determined the exact fixed point, say b∗ of ψ
resembling b(5). Finally we calculated the Jacobian Jφ of φ in b∗ and examined
its eigenvalues. As a behavior b = 〈P,Q〉 has only 12 degrees of freedom, it
suffices to calculate the Jacobian of the function φ′ : R

12 → R
12 which indexes

a behavior as follows.
〈


1 2 ·
3 4 ·
5 6 ·



 ,




7 9 11
8 10 12
· · ·




〉

(6.22)

For example, for k = 7, we have:

b∗ =

〈


0.0033 0.0033 0.9934
0.0033 0.0033 0.9934

0.5 0.5 0



 ,




0.0033 0.0033 0.5
0.0033 0.0033 0.5
0.9934 0.9934 0




〉
, (6.23)

and Jφ =

(
0 J∗

φ

J∗
φ 0

)
with

J∗
φ =





0.237 0. −0.02 0. −0.044 0.
−0.02 0. 0.237 0. −0.044 0.

0. 0.237 0. −0.02 0. −0.044
0. −0.02 0. 0.237 0. −0.044

−3.366 −3.366 3.366 3.366 0. 0.
3.366 3.366 −3.366 −3.366 0. 0.




(6.24)

This Jφ has the eigenvalues {λi} = {0.803, -0.803, 0.803, -0.803, -0.257, 0.257,
-0.217, 0.217, 0, 0, 0, 0} with Re(λi) < 1 so that the response system is stable.
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Figure 6.7: The three largest magnitudes of the eigenvalues of Jψ as a func-
tion of the buffer length k.

In figure 6.7 the three largest magnitudes of the eigenvalues of the Jacobian
are shown for increasing values of k. One can see that for k ≥ 7 all eigenvalues
lie within the unit circle so that the response system is stable in the fixed point
b(5).

To verify this stability also holds in the original system we ran a simula-
tion with a population of 50 agents. Before the experiment we let each agent
interact with b(5) for some time, such that the initial population behavior b0
approximated b(5). The agents then successively played language games and the
evolution of the population behavior b(i) was monitored. This was done for
k = 8, a case for which we expect stability, but also for the unstable case k = 4
as a reference experiment. In figure 6.8 the evolution of the distance11 between
b(i) and b(5) is shown for 5 independent runs in each case. The graphs suggest
that there is indeed a fundamental difference between the two different cases.
With k = 4, b(i) moves away rapidly from b(5) and converges to an optimal
behavior.12 If k = 8 this is not the case.

6.5 Conclusions

The naming game is one of the simplest examples of a language game. Yet its
analysis within our developed framework reveals that many aspects of it are not
as straightforward as one might expect at first sight. In particular, it turns out

11The distance between two behaviors is the Euclidean distance between the vectors com-
posed of all elements of the production and interpretation matrix.

12For each optimal behavior bopt = 〈P opt, Qopt〉 reached, we had P opt
3,3 = Qopt

3,3 = 0 which

implies |bopt − b(5)| =
√

5 ≈ 2.24.



156 CHAPTER 6. APPL. TO LANGUAGE EVOLUTION

2000 4000 6000

0.5

1

1.5

2

k = 4

k = 8

i

|bi − b(5)|

Figure 6.8: The evolution of the Euclidean distance between the population
behavior bi and the fixed point b(5) for different buffer lengths
k.

that some agent update schemes which have long been thought to be adequate,
can sometimes fail to break symmetry.

It is not always easy to pinpoint which feature of an agent makes it suitable
for the naming game, or conversely, renders it inappropriate. Nevertheless, a
common feature of all the agents we encountered showing deficiencies, be it by
a low adaptivity (in section 6.3.6) or the plain lack of amplification (in section
6.4.2 and 6.4.3), is that both the hearer and speaker update their lexicons after
a game.

It would be too hastily a conclusion to say that updating a speaker is always
a bad idea. What we can conclude, however, is that the more complicated the
information flow in a game, the more difficult it becomes to assess the adequacy
of the agents one designs. This probably explains why the revealed problems
went unnoticed before.

The findings from this chapter also emphasize the importance of having a
theoretical grounding for the design of agents which can predict their (in)ability
to reach a convention.



Chapter 7

Overall conclusion

In this dissertation we laid out a framework for studying the evolution of con-
ventions in multi-agent systems. We tried to provide as much mathematical
support as possible to make our results solid.

We started out by introducing the concept of a convention problem (CP).
Such a problem defines the preconditions agents have to fulfill when trying to
reach a convention. These include (i) the space of alternatives from which the
convention is to be chosen, (ii) the interaction model between the agents (iii) the
amount, nature and direction of information that may be transmitted during
an interaction.

Next, we defined five types of CP’s, namely, the elementary binary CP, the
multiple CP, the so-called CP3 and CP4 and the labeling problem (see p. 20
for reference).

Given a particular CP, we posed several questions. 1) Is it possible to devise
an agent which solves the problem? 2) Does a general method exist which
predicts or proves the performance of an agent? 3) Is there a general feature
which, if possessed by an agent, guarantees its success?

The extent to which we have answered these questions depends on the rela-
tive complexity of the type of CP considered. Regarding question one, we have
presented for each CP at least one agent which solves it. Chapter 3 introduces a
general method for analyzing an agent specification within a certain convention
problem, thereby answering question 2).

Question 3) was answered for CP1 and CP2. With regard to CP1, a sufficient
condition for an agent to solve it is that its state space can be endowed with a
partial order, compatible with its transition and behavior function. For CP2,
a similar condition is that the agent samples the behavior of other agents and
has an amplifying behavior function.

A general method for analyzing CP’s in multi-agent systems was introduced
in Chapter 3. Starting from an interpretation of an agent as a system with
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an input, output and internal state, we formulated the stochastic equations
governing the evolution of a multi-agent system. The property of this system
we are mostly interested in, is whether convention is reached and if so, how long
it takes. We argued that this quality can be predicted by analyzing an agent’s
so-called response function.

This framework was then applied to all CP’s introduced. Regarding CP1
and CP2 this yielded the aforementioned characterization of a class of agents
solving these problems. For CP3, which requires an active exploration on the
part of the agents, we investigated whether learning automata are suitable. It
turned out that the LR−P -automata do not solve this CP while the LR−ǫP do.
We used CP4 to illustrate the process of designing an agent that solves this
problem and possesses extra beneficial features.

Last but not least, our framework was applied to models for the evolution of
language. We particularly reanalyzed several update strategies for agents that
have been described in the literature on the naming game. Despite the apparent
simplicity of this game, it turned out that several update schemes, in fact, can
fail to reach an optimal language.

The successful application of our framework to the various problems intro-
duced in this dissertation, provides strong evidence for its adequacy as a analysis
tool and for the general applicability of the concept of an agent’s response func-
tion. The findings in Chapter 6 also show the importance of having theoretical
models alongside results obtained by computer simulations.

7.1 Topics for future research

On several occasions within this work we pointed out when our results were still
incomplete or did not yet reach their most natural shape.

While the response function analysis is intuitively appealing and has empiri-
cally shown to be an adequate way of predicting the performance of an agent in
a convention problem, this relation has not yet been rigorously shown to hold,
except in the case of the binary convention problem.

With regard to the characterization of agents solving CP1 and CP2 respec-
tively, it would be more elegant to have a property which is general enough to
encompass both classes at the same time. Starting from the present property
for CP1, this could be performed by extending the notion of a partial order
to state spaces with more than two alternatives and perhaps by relaxing the
currently rather strong assumption on the behavior function.

Concerning the LR−ǫP -automaton for CP3, we did not yet consider fixed
points of the response function not of the form xe(1) + 1−x

n−1
(1− e(1)). Although

we believe these will not alter our conclusion, a complete analysis should incor-
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porate them.
For CP4 we presented an agent we claimed to be ergodic and amplifying.

While this intuitively seems very plausible and empirically appears to be the
case, a more grounded argumentation would be reassuring.

In section 6.4 on the naming game with homonymy, while we were able to
analytically derive that in case 2 and 3, a problem regarding symmetry breaking
exists, we could not establish formally that case 1 does not suffer this problem.
The reason why it is easier to show that an agent does not solve a convention
problem than the inverse, is simply that for the former it is sufficient to find at
least one system-level suboptimal state which can be shown to be stable. For
showing that an agent solves a convention problem, one has to show that all
suboptimal equilibria are unstable.

Finally, all the convention problems we considered were still relatively simple
compared to the problems that e.g. agents face when having to simultaneously
develop a conceptual and linguistic system. Although we believe that a deep
understanding of simple problems can aid the developing of solutions for more
difficult ones, a similar systematic analysis for these latter remains to be done.
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Appendix A

Equivalence of the parallel and
sequential interaction model

The parallel and sequential interaction model are two different ways by which
the random, pairwise interactions between agents from a population can be
specified. Generally, an interaction is asymmetrical and we refer to the two dif-
ferent roles an agent can take up as I and II. We now show that both interaction
models are essentially the same. The population size is N .

In the sequential interaction model time is discrete. At each time step, two
agents are selected at random and interact. More precisely, agent I is chosen at
random from the population and from the remaining N − 1 agents agent II is
chosen (or vice versa, which is equivalent).

In the parallel interaction model, agents operate in parallel and independent
from each other. Each agent can initiate an interaction with any other agent.
We will also say that an agent ‘fires’ when initiating an interaction. Next,
the points in time at which a particular agent fires are described by a Poisson
process with parameter λ. In other words, each agent fires on average λ times
per time unit and the process is memoryless: the time between two firings
is exponentially distributed with parameter λ. When an agent initiates an
interaction, he takes role I and chooses another agent at random which takes
up role II. For simplicity we assume that the duration of an interaction is small
compared to the time between interactions such that interactions between agents
in the population do not overlap in time.1

The firings of all agents, at times t1, t2, . . . again form a Poisson process with
parameter Nλ (Grimmett and Stirzaker, 1992) as depicted in figure A.1. Let
AIk be the index of the initiating agent in interaction k and AIIk the index of the

1This implies that interactions do not really occur in parallel.
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Figure A.1: The combination of N Poisson processes with parameter λ
leads to a Poisson process with parameter nλ. This is shown
for the case of n = 3 agents.

other agent participating in the interaction. Hence,

AI1 AI2 AI3 . . .
AII1 AII2 AII3 . . .

is a sequence of pairs of random variables taking values in {1 . . . N}. We will
now show that these variables define a sequential process as described earlier.

First of all, AIk, is independent from all variables Ax1 . . . A
x
k−1 with x ∈ {I, II}

and is uniformly distributed over 1 . . . N . Indeed, AIk is the index of the first
agent to fire after time tk−1 (let t0 = 0). Let T (i) be the time between tk−1 and
the next firing of agent i. These random variables do not depend on previous
events because the agents’ firing times are described by a Poisson process. As
we have

AIk = arg min
i∈{1...N}

T (i). (A.1)

it follows that AIk does not depend on the participants in previous interactions.
Moreover, the random variables T (i), i = 1 . . . N , have an identical exponential
probability distribution with parameter λ. Consequently from (A.1) it follows
that AIk is uniformly distributed over 1 . . . N .

Similarly, AIIk is also independent from all variables Ax1 . . . A
x
k−1 with x ∈

{I, II} as, by definition, it depends only on AIk, which does not depend on these
variables. We have

Prob[AIIk = j|AIk = i] =

{
0 if i = j

1
N−1

otherwise
(A.2)
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so that AIk and AIIk have a joint probability function:

pAI
k,A

II
k

(i, j) = Prob[AIk = i, AIIk = j] (A.3)

= Prob[AIIk = j|AIk = i] Prob[AIk = i] (A.4)

=

{ 1
N(N−1)

if i 6= j

0 if i = j
(A.5)

This probability function is symmetrical in its arguments. Therefore, as AIk is
uniformly distributed, AIIk is also uniformly distributed. Also, it follows that
the role the initiator of an interaction takes, does not matter.

To sum up, we have shown that the participants are independent between
interactions and distributed according to (A.5) within a interaction. So, without
changing the process dynamics, we could have generated the times at which the
interactions take place, t1, t2 . . ., according to a Poisson process with parameter
Nλ and determine the participants in each interaction using (A.5). It is then a
little step to omit the continuous time altogether and just to consider successive
interactions at discrete time steps 1, 2, . . ., which is exactly the sequential model
introduced in the beginning of this section.

Still, one might wonder how this discrete time scale relates to the continuous
one, especially if one wants to translate results about time complexity from one
domain to the other. For this we consider the total number of interactions that
have been played up to a time t in the parallel system. This is a random variable
K with Poisson distribution:

pK(k) = e−µ
µk

k!
(A.6)

whereby µ = Nλt and with

E[K] = Var[K] = µ. (A.7)

Accordingly, if we associate the interaction index k with the point in time
t = k/(Nλ), such that µ = k, then the ratio between the actual number of
interactions played up to that time and k, K/k is a random variable with mean
1 and variance 1/k. Hence this variance disappears for large k and we have

lim
k→∞

Prob[|K/k − 1| > ǫ] = 0 ∀ǫ > 0. (A.8)

Thus the relative difference between k and the number of interactions played up
to time k/(Nλ) decreases with k. Therefore, for larger k, the sequential system
is a very good approximation to the parallel system, and time scales relate to
each other through a factor Nλ.
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Appendix B

Finite Markov Chains

We briefly give the terminology and properties of finite Markov chains for refer-
ence. We do not give an extensive discussion or provide examples as there exist
very good handbooks on this subject (see Kemeny and Snell (1976)). At some
points we present things differently than usual. For example, in mosts texts on
finite Markov chains one finds that an irreducible Markov chain has a unique
stationary distribution. While this is a sufficient condition, it is not necessary,
as is stated in property 55. The reason we need this extension is discussed in
section 3.4.

A finite Markov chain (FMC) is a stochastic process involving a sequence
of random variables X0, X1, . . ., which can take values in a finite set S =
{1, 2, . . . ,m}, and for which the markov property holds. The Markov prop-
erty states that the conditional distribution of a variable Xi+1 only depends on
Xi and not on previous variables, or

Pr[Xi+1 = yi+1 | Xi = yi, . . . , X0 = y0] = Pr[Xi+1 = yi+1 | Xi = yi] (B.1)

A FMC with m states is completely specified by its transition matrix. This
is a m ×m row-stochastic matrix P where Pij is the probability to go in one
step from state i to state j. The probability to go from i to j in n-steps is given
by P n

ij.
It is useful to associate a directed graph with a FMC M , say G(M), with m

nodes, corresponding to the states and a directed edge between node i and j if
the probability to go from state i to j is strictly positive, or pij > 0.

The following definitions and properties are stated in the context of finite
Markov chains.1

Definition 37 A state j is accessible from state i if there is a path in G(M)
from i to j.

1Some of the stated properties do not hold for infinite state spaces.
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An equivalent definition is that P n
ij > 0 for some n.

Definition 38 State i and j communicate if i is accessible from j and j is
accessible from i.

Property 39 Communication is an equivalence relation.

Hence the state space S can be partitioned into equivalence classes so that
within each such class every pair of states communicates.

Definition 40 An irreducible class is an equivalence class of the communi-
cation relation.

In other words, an irreducible class is a set of communicating states which
cannot be extended.

Definition 41 An irreducible class C ′ is accessible from an irreducible class
C if there is a state j ∈ C ′ accessible from a state i ∈ C.

Obviously, then any state in C ′ is accessible from any state in C, as all states
in these classes communicate.

Property 42 Accessibility is a partial order on the irreducible classes.

The antisymmetry of accessibility can be easily seen: if C = C ′ and C ′ is
accessible from C, then symmetry would imply that all states in C communicate
with all states in C ′, in contradiction with them being different irreducible
classes.

Definition 43 A set of states C is closed if Pij = 0 for all i ∈ C and j /∈ C.

Once the system enters a closed set, it can never leave that set again.

Property 44 An irreducible class is closed if no other irreducible class is ac-
cessible from it.

Property 45 There is at least one closed irreducible class.

This follows from the partial order that the accessibility relation induced on the
irreducible classes. As there is only a finite number of such classes there has to
be a least one minimal element.

Definition 46 A state in a closed irreducible class is recurrent.
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Definition 47 A state is transient if it not recurrent.

Definition 48 The period of a state i is the largest number k for which holds:

Pr[Xn = i | X0 = i] > 0⇒ n is a multiple of k

Property 49 Every state in an irreducible class has the same period.

Consequently we can speak of the period of a class.

Definition 50 A state is aperiodic if it has period 1.

Definition 51 A state i is absorbing if Pii = 1 and consequently Pij = 0 for
i 6= j.

Definition 52 A stationary distribution is a vector π ∈ Σm for which holds

π = πP

In order to prove the existence of a stationary distribution we use the fol-
lowing

Theorem 53 (Brouwer’s fixed point theorem) Let f : S → S be a contin-
uous function from a non-empty, compact, convex set S ⊂ R

n into itself, then
f has a fixed point in S, i.e. there is a x∗ ∈ S such that x∗ = f(x∗).

Proposition 54 Every finite Markov chain has at least one stationary distri-
bution.

This follow immediately from Brouwer’s fixed point theorem applied to the
function f : Σm → Σm with f(x) = xP .

Property 55 A FMC has a unique stationary distribution if and only if it has
only one closed irreducible subset.

Property 56 Given a FMC with a unique stationary distribution π and closed
irreducible subset C, it holds that πi > 0⇔ i ∈ C.

Property 57 Under the same assumptions as in property 56, if C is aperiodic,
then it holds that

lim
n→∞

P n = 1π.
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Appendix C

The dynamics of word creation
and spreading in the naming
game

We will try to gain some insight in the process of word creation and spreading
in the naming game, by considering some simplified settings. This analysis
depends primarily on the statistical properties of the interactions.

C.1 Number of words

Given a definition of the naming game in which homonymy can not arise, we
can estimate the total number of different words that will be created by simply
multiplying the number of words per object, sayNw, with the number of objects.
Due to the stochasticity of the interactions between the agents, Nw is not fixed
but a random variable. In order to determine the distribution of this variable
we make the following observations. A new word is only created when a speaker
does not yet have a word for the object. We will assume that this implies
that this speaker has never taken part in a naming game before, as speaker nor
hearer. Or in other words, we assume that an agent will always prefer using
an existing word for an object rather than introducing a new one.1 Eventually,
every agent will have participated at least once in a naming game and from that
time on, no new words are created anymore. If we define the Bernoulli random

1Depending on the agent architecture, minor exceptions are possible. E.g. for the agent
described in section 6.2.2 it is possible that the strengths of all words for an object reach zero
due to a repeated and unsuccessful use as a speaker, after which the agent will introduce a
new word.
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variables

µi =

{
1 if agent i is speaker in its first game

0 otherwize,
(C.1)

we have P[µi = 0] = P[µi = 0] = 1/2, as the speaker and hearer are chosen
randomly from the population. Then

Nw =
N∑

i=1

µi. (C.2)

and consequently

E[Nw] =
N∑

i=1

E[µi] =
N

2
. (C.3)

While the µi’s are not completely independent—e.g. Nw is at least 1: all
agents, except one, are hearer in their first game and at most N − 1: all agents,
except one, are speaker in their first game— Nw has approximately a binomial
distribution with

σ[Nw] ≈
√
N

2
(C.4)

In the case of multiple objects, sayM , each object j causes a number of words
N

(j)
w to arise and we have for the total number of words N∗

w =
∑M

j=1N
(j)
w . Hence

E[N∗
w] = MN

2
and because the N

(j)
w are independent and close to binomially

distributed, N∗
w has also approximately a binomial distribution with σ[N∗

w] ≈√
MN
2

.

C.2 Time to reach all words

We can also make an estimate of the number of games it takes to reach a
state from which no new words are introduced onwards. Or—under the same
assumption as in section C.1—the number of games it takes to have each agent
at least participated in one game. Let us denote this stochastic variable as Tw.
First, suppose that at every time step we randomly choose only one agent from
the population, with replacement. Suppose that i distinct agents have already
been chosen at least once. The chance of choosing a new agent equals N−i

N
, so

number of steps needed to go from i to i+ 1 chosen agents, ti, is geometrically
distributed with mean N

N−i . If we define Z as the number of steps it takes to
have every agent chosen at least once in this setting, we have

Z =
N−1∑

i=0

ti (C.5)
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and obtain

E[Z] =
N−1∑

i=0

E[ti] =
N−1∑

i=0

N

N − i = N
N∑

i=1

1

i
≈ N(log(N) + γ)

with γ = 0.577... the Euler-Mascheroni2 constant. Up till now this argument is
equivalent to the coupon collector’s problem. Let us now turn to the case where
at each time step two agents, the speaker and hearer, are chosen at random.
This process is equal to two times choosing one agent at random, neglecting the
fact that the speaker and hearer are always different, which will slightly speed
up the process. It follows that Tw ≈ 1

2
Z and

E[Tw] ≈ 1

2
E[Z] =

1

2
N(log(N) + γ). (C.6)

What concerns the distribution of Z, it is known that for large N it approxi-
mates an extreme value distribution of the Gumbel type (see e.g. Holst (2001)),
i.e.

lim
N→∞

Prob [Z/N − log(N) ≤ x] = e−e
−x

. (C.7)

As Tw is simply scaling of Z it follows that

Prob [2Tw/N − log(N) ≤ x] ≈ e−e
−x

. (C.8)

The fact that Z and Tw approximately have an extreme value distribution
may not be apparent from the equation (C.5). Yet if we look at the process
from another perspective this becomes more obvious. Z is the number of steps
it takes until every agent is chosen at least once. If Xi is the time step at which
agent i is chosen for the first time then these Xi’s are identically distributed
(geometrically) and it holds that

Z = max
i=1..N

Xi. (C.9)

While the remaining condition for Z to be an extreme value, namely the in-
dependence of the Xi, is not fulfilled, (C.9) suggests that Z will be roughly
extreme value distributed, especially because the interdependence of the Xi

decreases with increasing N .
To illustrate this limiting distribution of Tw, figure C.1 shows, for N = 100,

both the approximate, continuous distribution fTw derived from (C.8):

fTw(x) = 2 exp(−Ne−2x/N − 2x/N) (C.10)

2The Euler-Mascheroni constant is the limit of the difference between the harmonic series
and the natural logarithm: limN→∞((

∑N

i=1
1
i
)− log(N)).
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as the exact (discrete) distribution pTw . The latter can be obtained recursively:
let qj,k be the probability that exactly j agents have been chosen up to time k.
There holds that

q0,0 = 1

qj,0 = 0 for j > 0

q0,k = 0 for k > 0

q1,k = 0 for all k ≥ 0

and

qj,k =
(i− 1)i

(N − 1)N
qi,k−1 +

2(N − i+ 1)(i− 1)

(N − 1)N
qi−1,k−1

+
(N − i+ 1)(N − i+ 2)

(N − 1)N
qi−2,k−1

for j ≥ 2 and k ≥ 1

(C.11)

The right hand side of (C.11) considers respectively the case where the two
chosen agents had both already been chosen before, the case where one had
been chosen already but not the other and the case where both agents had
never been chosen before. We then obtain pTw as follows:

pTw(k) =
2

N
qn−1,k−1 +

2

N(N − 1)
qn−2,k−1 (C.12)

Figure C.1 shows that the extreme value distribution (C.10) is a good ap-
proximation to pTw and in particular captures its asymmetrical nature very well.

In the case of multiple objects, we are interested in the time T ∗
w it takes to

have each agent participated at least once in a game about each object. We can
make a similar argument as before. Instead of choosing out of a set of N agents,
we now choose from the set of all combinations of agents and objects. This set
has size MN and from an analogous reasoning it follows that

E[T ∗
w] ≈ MN

2
(log(M) + log(N) + γ). (C.13)

As a result we have E[T ∗
w] > M E[Tw].

C.3 Time for one word to spread

Another quantity of interest is the time it takes for an invented word to spread
itself in the population. Of course not every created word will eventually be
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Figure C.1: The probability distribution of Tw, the time until all agents
have participated at least in one game for a population of N =
100 agents. pTw is the exact discrete distribution and fTw is
the extreme value approximation.

known by every agent, but at least the word upon which the agents agree must
be fully distributed in the population.

We start with a simple system in which initially only one agent has a word,
say w, and no new words are introduced. Every time step two agents are chosen
at random from the population, one speaker and one hearer. Only if the speaker
knows w, it is propagated to the hearer, who can propagate it in turn when he
becomes speaker in a later game. We are interested in the number of time steps,
Ts, it takes until all agents know w. As this model is very similar to virus spread
models we will call an agent who knows w ‘infected’. Suppose that at a certain
point in time, i agents are infected. The probability that in the next game
one more agent gets infected equals i(N−i)

N(N−1)
, i.e. the chance that the speaker is

infected and the hearer is not. The number of steps, Xi, it takes to increase the
number of infected agents is thus geometrically distributed with mean N(N−1)

i(N−i) .

Similar to (C.5) we get

Ts =
N−1∑

i=1

Xi. (C.14)
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from which follows

E[Ts] =
N−1∑

i=1

E[Xi] =
N−1∑

i=1

N(N − 1)

i(N − i) =
N−1∑

i=1

(
N − 1

i
+
N − 1

N − i

)
(C.15)

= 2(N − 1)
N−1∑

i=1

1

i
(C.16)

≈ 2(N − 1)(log(N − 1) + γ) (C.17)

C.4 Time for all words to spread

For a moment we drop the requirement that the agents have to agree upon
one word in the end. Instead we demand that every agent knows all words
introduced and will estimate the time it takes, Tas, to reach such a state. We
assume that a speaker chooses randomly between all words he has encountered.
From (C.4) we know that the number of words that will arise is on average N/2.
For simplicity we suppose that this is the exact number of words that has to be
distributed in the population.

In order to derive an estimate for E[Tas] it is helpful to visualize the process
of word spreading. Figure C.2 shows a representation of the state of the pop-
ulation. There are N/2 rows, each corresponding to a word and N columns,
corresponding to the agents. The square in the jth row and ith column is marked
iff agent i knows word j. When a speaker is plays a game with a hearer ih, a
randomly chosen mark from column is is copied to column ih on the same row.
If that square was already marked, nothing changes. Tas is the first time on
which all squares are marked.

Now we have to answer the following question: Given that the table contains
k marks, what is the probability of adding a new mark in the next game? This
is the probability that the hearer receives a word he had not marked yet. From
the fact that the speaker is chosen randomly and chooses a mark randomly,
together with an initial uniform spread of the words, we may safely infer that
the word the hearer receives is a random one from the N/2 possibilities. So
the question that remains is with what probability the hearer does not know a
randomly chosen word. This obviously is the fraction of empty squares in the
hearer’s column. But as the hearer is also chosen randomly from the population,
the chance to add a mark is the average of the fraction of empty squares in each
column, which is simply the fraction of empty squares in the table, 1 − k/K,
with K = N(N − 1)/2.

The number of steps, Xk, to go from k to k+1 marks is thus a geometrically
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a1 a2 a3 a4 a5 a6 a7 a8

w 1 X X

w 2 X X X

w 3 X X X

w 4 X X X

speaker hearer

Figure C.2: A representation of the state of a population of 8 agents using
4 words. A mark means that an agent knows a word. A game
with agent a3 as speaker and agent a6 as hearer is shown in
which word w1 is propagated.

distributed random variable with mean 1
1−k/K . We have

Tas =
K−1∑

k=kinit

Xk (C.18)

with kinit the initial number of marks in the table. It follows that

E[Tas] =
K−1∑

k=kinit

E[Xk] =
K−1∑

k=kinit

1

1− k/K = K

K−kinit∑

k=1

1

k
(C.19)

≈ K(log(K − kinit) + γ). (C.20)

For N ≫ 1 and kinit only proportionally increasing with K we can write

E[Tas] ≈ N2 log(N). (C.21)

Interestingly for largeN , from (C.4), (C.17) and (C.21) we get E[Tas] ≈ E[Nw]E[Ts],
or in words, the time to have all words distributed is the time to get one word
distributed times the number of words.

C.5 Summary

With N the population size and M the number of objects we can sum up:
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quantity description asymptotic expected value

Nw number of words created (one object) N
2

N∗
w number of words created MN

2

Tw time until all words are created (one object) 1
2
N log(N)

T ∗
w time until all words are created 1

2
MN(log(M) + log(N))

Ts time for one word to spread 2N log(N)

Tas time for N/2 words to spread N2 log(N)


